📄 rfc905.txt
字号:
a) Class 0: Simple Class;
b) Class 1: Basic Error recovery Class;
c) Class 2: Multiplexing Class;
d) Class 3: Error Recovery and Multiplexing Class;
e) Class 4: Error Detection and Recovery Class.
NOTE - Transport connections of classes 2, 3 and 4 may be
multiplexed together onto the same network connection.
5.4.2 Negotiation
The use of classes and options is negotiated during connection
establishment. The choice made by the transport entities will
depend upon:
a) the TS-users' requirements expressed via T-CONNECT service
primitives;
b) the quality of the available network services;
c) the user required service versus cost ratio acceptable to
the TS-user.
5.4.3 Choice of network connection
The following list classifies network services in terms of
quality with respect to error behavior in relation to user
requirements; its main purpose is to provide a basis for the
decision regarding which class of transport protocol should be
used in conjunction with given network connection:
22
a) Type A. Network connection with acceptable residual error
rate (for example not signalled by disconnect or reset)
and acceptable rate of signalled errors.
b) Type B. Network connections with acceptable residual
error rate (for example not signalled by disconnect or
reset) but unacceptable rate of signalled errors.
c) Type C. Network connections with unacceptable residual
error rate.
It is assumed that each transport entity is aware of the quality
of service provided by particular network connections.
5.4.4 Characteristics of Class 0
Class 0 provides the simplest type of transport connection and is
fully compatible with the CCITT recommendation S.70 for teletex
terminals.
Class 0 has been designed to be used with type A network
connections.
5.4.5 Characteristics of Class 1
Class 1 provides a basic transport connection with minimal
overheads.
The main purpose of the class is to recover from network
disconnect or reset.
Selection of this class is usually based on reliability criteria.
Class 1 has been designed to be used with type B network
connections.
23
5.4.6 Characteristics of Class 2
5.4.6.1 General
Class 2 provides a way to multiplex several transport connections
onto a single network connection. This class has been designed
to be used with type A network connections.
5.4.6.2 Use of explicit flow control
The objective is to provide flow control to help avoid congestion
at transport-connection-end-points and on the network connection.
Typical use is when traffic is heavy and continuous, or when
there is intensive multiplexing. Use of flow control can
optimize response times and resource utilization.
5.4.6.3 Non-use of explicit flow control
The objective is to provide a basic transport connection with
minimal overheads suitable when explicit disconnection of the
transport connection is desirable. The option would typically be
used for unsophisticated terminals, and when no multiplexing onto
network connections is required. Expedited data is never
available.
5.4.7 Characteristics of Class 3
Class 3 provides the characteristics of Class 2 plus the ability
to recover from network disconnect or reset. Selection of this
class is usually based upon reliability criteria. Class 3 has
been designed to be used with type B network connections.
24
5.4.8 Characteristics of Class 4
Class 4 provides the characteristics of Class 3, plus the
capability to detect and recover from errors which occur as a
result of the low grade of service available from the NS-
provider. The kinds of errors to be detected include: TPDU
loss, TPDU delivery out of sequence, TPDU duplication and TPDU
corruption. These errors may affect control TPDUs as well as
data TPDUs.
This class also provides for increased throughput capability and
additional resilience against network failure. Class 4 has been
designed to be used with type C network connections.
5.5 Model of the transport layer
A transport entity communicates with its TS-users through one or
more TSAPs by means of the service primitives as defined by the
transport service definition DP 8072. Service primitives will
cause or be the result of transport protocol data unit exchanges
between the peer transport entities supporting a transport
connection. These protocol exchanges are effected using the
services of the Network Layer as defined by the Network Service
Definition DP 8348 through one or more NSAPs.
Transport connection endpoints are identified in end systems by
an internal, implementation dependent, mechanism so that the TS-
user and the transport entity can refer to each transport
connection.
25
+------+ +------+
----------| TSAP |------------------------| TSAP |----------
+------+ +------+
| |
+---------------+ +---------------+
| Transport | | Transport |
| entity | | entity |
+---------------+ +---------------+
| |
| |
+------+ +------+
----------| NSAP |------------------------| NSAP |----------
+------+ +------+
| |
+-------------------------------+
Figure 2 . Model of the transport layer
NOTE - For purpose of illustration, this figure shows only one
TSAP and one NSAP for each transport entity. In certain
instances, more than one TSAP and/or more than one NSAP may be
associated with a particular transport entity.
26
SECTION TWO. TRANSPORT PROTOCOL SPECIFICATION
6 ELEMENTS OF PROCEDURE
This clause contains elements of procedure which are used in the
specification of protocol classes in clauses 7 to 12. These
elements are not meaningful on their own.
The procedures define the transfer of TPDUs whose structure and
coding is specified in clause 13. Transport entities shall
accept and respond to any TPDU received in a valid NSDU and may
issue TPDUs initiating specific elements of procedure specified
in this clause.
NOTE - Where network service primitives and TPDUs and parameters
used are not significant for a particular element of procedure,
they have not been included in the specification.
6.1 Assignment to network connection
6.1.1 Purpose
The procedure is used in all classes to assign transport
connections to network connections.
6.1.2 Network service primitives
The procedure makes use of the following network service
primitives:
a) N-CONNECT;
b) N-DISCONNECT.
27
6.1.3 Procedure
Each transport connection shall be assigned to a network
connection. The initiator may assign the transport connection to
an existing network connection of which it is the owner or to a
new network connection (see Note 1) which it creates for this
purpose.
The initiator shall not assign or reassign the transport
connection to an existing network connection if the protocol
class(es) proposed or the class in use for the transport
connection are incompatible with the current usage of the network
connection with respect to multiplexing (see Note 2).
During the resynchronization (see 6.14) and reassignment after
failure (see 6.12) procedures, a transport entity may reassign a
transport connection to another network connection joining the
same NSAPs, provided that it is the owner of the network
connection and that the transport connection is assigned to only
one network connection at any given time.
During the splitting procedure (see 6.23), a transport entity may
assign a transport connection to any additional network
connection joining the same NSAPs, provided that it is the owner
of the network connection and that multiplexing is possible on
the network connection.
The responder becomes aware of the assignment when it receives
a) a CR TPDU during the connection establishment procedure
(see 6.5); or
b) an RJ TPDU or a retransmitted CR or DR TPDU during the
resynchronization (see 6.14) and reassignment after
failure (see 6.12) procedures; or
c) any TPDU when splitting (see 6.23) is used.
28
NOTES
1. When a new network connection is created, the quality of
service requested is a local matter, although it will
normally be related to the requirements of transport
connection(s) expected to be assigned to it.
2. An existing network connection may also not be suitable
if, for example, the quality of service requested for the
transport connection cannot be attained by using or
enhancing the network connection.
3. A network connection with no transport connection(s)
assigned to it, may be available after initial
establishment, or because all of the transport connections
previously assigned to it have been released. It is
recommended that only the owner of such a network
connection should release it. Furthermore, it is
recommended that it not be released immediately after the
transmission of the final TPDU of a transport connection -
either a DR TPDU in response to CR TPDU or a DC TPDU in
response to DR TPDU. An appropriate delay will allow the
TPDU concerned to reach the other transport entity
allowing the freeing of any resources associated with the
transport connection concerned.
4. After the failure of a network connection, transport
connections which were previously multiplexed together may
be assigned to different network connections, and vice
versa.
6.2 Transport protocol
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -