📄 rfc1659.txt
字号:
Network Working Group B. Stewart
Request for Comments: 1659 Xyplex, Inc.
Obsoletes: 1317 July 1994
Category: Standards Track
Definitions of Managed Objects for RS-232-like Hardware Devices
using SMIv2
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Table of Contents
1. Introduction ................................................ 1
2. The SNMPv2 Network Management Framework ..................... 1
2.1 Object Definitions ......................................... 2
3. Overview .................................................... 2
3.1 Relationship to Interface MIB .............................. 3
4. Definitions ................................................. 3
5. Acknowledgements ............................................ 20
6. References .................................................. 20
7. Security Considerations ..................................... 21
8. Author's Address ............................................ 21
1. Introduction
This memo defines an extension to the Management Information Base
(MIB) for use with network management protocols in the Internet
community. In particular, it defines objects for the management of
RS-232-like devices.
2. The SNMPv2 Network Management Framework
The SNMPv2 Network Management Framework consists of four major
components. They are:
o RFC 1442 [1] which defines the SMI, the mechanisms used for
describing and naming objects for the purpose of management.
o STD 17, RFC 1213 [2] defines MIB-II, the core set of managed
objects for the Internet suite of protocols.
Stewart [Page 1]
RFC 1659 RS-232-like MIB July 1994
o RFC 1445 [3] which defines the administrative and other
architectural aspects of the framework.
o RFC 1448 [4] which defines the protocol used for network
access to managed objects.
The Framework permits new objects to be defined for the purpose of
experimentation and evaluation.
2.1. Object Definitions
Managed objects are accessed via a virtual information store, termed
the Management Information Base or MIB. Objects in the MIB are
defined using the subset of Abstract Syntax Notation One (ASN.1)
defined in the SMI. In particular, each object object type is named
by an OBJECT IDENTIFIER, an administratively assigned name. The
object type together with an object instance serves to uniquely
identify a specific instantiation of the object. For human
convenience, we often use a textual string, termed the descriptor, to
refer to the object type.
3. Overview
The RS-232-like Hardware Device MIB applies to interface ports that
might logically support the Interface MIB, a Transmission MIB, or the
Character MIB. The most common example is an RS-232 port with modem
signals.
The RS-232-like Hardware Device MIB is mandatory for all systems that
have such a hardware port supporting services managed through some
other MIB.
The MIB includes multiple similar types of hardware, and as a result
contains objects not applicable to all of those types. The
compliance definitions herein thus have a general group for all
implementations, and separate groups for the different types of
ports, such as asynchronous and synchronous.
The RS-232-like Hardware Port MIB includes RS-232, RS-422, RS-423,
V.35, and other asynchronous or synchronous, serial physical links
with a similar set of control signals.
The MIB contains objects that relate to physical layer connections.
Such connections may provide interesting hardware signals (other than
for basic data transfer), such as RNG and DCD. Hardware ports also
have such attributes as speed and bits per character.
Stewart [Page 2]
RFC 1659 RS-232-like MIB July 1994
The MIB comprises one base object and four tables, detailed in the
following sections. The tables contain objects for all ports,
asynchronous ports, and input and output control signals.
3.1. Relationship to Interface MIB
The RS-232-like MIB is one of many MIBs designed for layered use as
described in the Interface MIB [5]. In most implementations where it
is present, it will be in the lowest interface sublayer, that is, the
RS-232-like MIB represents the physical layer, providing service to
higher layers such as the Character MIB [6] or PPP MIB [7].
The Interface MIB's ifTestTable and ifRcvAddressTable are not
relevant to the RS-232-like MIB.
The RS-232-like MIB is relevant for ifType values rs232(33), v35(45),
and perhaps others.
The RS-232-like MIB requires the conformance groups ifGeneralGroup,
and ifFixedLengthGroup.
The value of ifSpeed is the same as rs232PortOutSpeed.
Usefulness of error counters in this MIB depends on the octet
counters in ifFixedLengthGroup.
4. Definitions
RS-232-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
Counter32, Integer32
FROM SNMPv2-SMI
InterfaceIndex
FROM IF-MIB
transmission
FROM RFC1213-MIB
MODULE-COMPLIANCE, OBJECT-GROUP
FROM SNMPv2-CONF;
rs232 MODULE-IDENTITY
LAST-UPDATED "9405261700Z"
ORGANIZATION "IETF Character MIB Working Group"
CONTACT-INFO
" Bob Stewart
Postal: Xyplex, Inc.
Stewart [Page 3]
RFC 1659 RS-232-like MIB July 1994
295 Foster Street
Littleton, MA 01460
Tel: 508-952-4816
Fax: 508-952-4887
E-mail: rlstewart@eng.xyplex.com"
DESCRIPTION
"The MIB module for RS-232-like hardware devices."
::= { transmission 33 }
-- Generic RS-232-like information
rs232Number OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of ports (regardless of their current
state) in the RS-232-like general port table."
::= { rs232 1 }
-- RS-232-like General Port Table
rs232PortTable OBJECT-TYPE
SYNTAX SEQUENCE OF Rs232PortEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of port entries. The number of entries is
given by the value of rs232Number."
::= { rs232 2 }
rs232PortEntry OBJECT-TYPE
SYNTAX Rs232PortEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Status and parameter values for a port."
INDEX { rs232PortIndex }
::= { rs232PortTable 1 }
Rs232PortEntry ::=
SEQUENCE {
rs232PortIndex
InterfaceIndex,
rs232PortType
Stewart [Page 4]
RFC 1659 RS-232-like MIB July 1994
INTEGER,
rs232PortInSigNumber
Integer32,
rs232PortOutSigNumber
Integer32,
rs232PortInSpeed
Integer32,
rs232PortOutSpeed
Integer32,
rs232PortInFlowType
INTEGER,
rs232PortOutFlowType
INTEGER
}
rs232PortIndex OBJECT-TYPE
SYNTAX InterfaceIndex
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of ifIndex for the port. By convention
and if possible, hardware port numbers map directly
to external connectors. The value for each port must
remain constant at least from one re-initialization
of the network management agent to the next."
::= { rs232PortEntry 1 }
rs232PortType OBJECT-TYPE
SYNTAX INTEGER { other(1), rs232(2), rs422(3),
rs423(4), v35(5), x21(6) }
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The port's hardware type."
::= { rs232PortEntry 2 }
rs232PortInSigNumber OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of input signals for the port in the
input signal table (rs232PortInSigTable). The table
contains entries only for those signals the software
can detect and that are useful to observe."
::= { rs232PortEntry 3 }
Stewart [Page 5]
RFC 1659 RS-232-like MIB July 1994
rs232PortOutSigNumber OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of output signals for the port in the
output signal table (rs232PortOutSigTable). The
table contains entries only for those signals the
software can assert and that are useful to observe."
::= { rs232PortEntry 4 }
rs232PortInSpeed OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The port's input speed in bits per second. Note that
non-standard values, such as 9612, are probably not allowed
on most implementations."
::= { rs232PortEntry 5 }
rs232PortOutSpeed OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The port's output speed in bits per second. Note that
non-standard values, such as 9612, are probably not allowed
on most implementations."
::= { rs232PortEntry 6 }
rs232PortInFlowType OBJECT-TYPE
SYNTAX INTEGER { none(1), ctsRts(2), dsrDtr(3) }
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The port's type of input flow control. 'none'
indicates no flow control at this level.
'ctsRts' and 'dsrDtr' indicate use of the indicated
hardware signals."
::= { rs232PortEntry 7 }
rs232PortOutFlowType OBJECT-TYPE
SYNTAX INTEGER { none(1), ctsRts(2), dsrDtr(3) }
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The port's type of output flow control. 'none'
Stewart [Page 6]
RFC 1659 RS-232-like MIB July 1994
indicates no flow control at this level.
'ctsRts' and 'dsrDtr' indicate use of the indicated
hardware signals."
::= { rs232PortEntry 8 }
-- RS-232-like Asynchronous Port Table
rs232AsyncPortTable OBJECT-TYPE
SYNTAX SEQUENCE OF Rs232AsyncPortEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of asynchronous port entries. Entries need
not exist for synchronous ports."
::= { rs232 3 }
rs232AsyncPortEntry OBJECT-TYPE
SYNTAX Rs232AsyncPortEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Status and parameter values for an asynchronous
port."
INDEX { rs232AsyncPortIndex }
::= { rs232AsyncPortTable 1 }
Rs232AsyncPortEntry ::=
SEQUENCE {
rs232AsyncPortIndex
InterfaceIndex,
rs232AsyncPortBits
INTEGER,
rs232AsyncPortStopBits
INTEGER,
rs232AsyncPortParity
INTEGER,
rs232AsyncPortAutobaud
INTEGER,
rs232AsyncPortParityErrs
Counter32,
rs232AsyncPortFramingErrs
Counter32,
rs232AsyncPortOverrunErrs
Counter32
}
Stewart [Page 7]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -