📄 rfc1665.txt
字号:
of the SNA services)."
::= { snaNodeAdminEntry 2 }
snaNodeAdminType OBJECT-TYPE
SYNTAX INTEGER {
other(1),
pu10(2),
pu20(3),
t21len(4),
endNode(5),
networkNode(6)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value indicates the type of SNA Node.
A write operation to this object will
not change the operational value reflected
in snaNodeOperType until the Node has
been re-activated (e.g., after the next initialization
of the SNA services)."
::= { snaNodeAdminEntry 3 }
snaNodeAdminXidFormat OBJECT-TYPE
SYNTAX INTEGER {
format0(1),
format1(2),
format3(3)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value indicates the type of XID format used for
this Node.
Note that there is no format type 2.
A write operation to this object will
not change the operational value reflected
in snaNodeOperAdminXidFormat until the Node has
been re-activated (e.g., after the next initialization
of the SNA services)."
Kielczewski, Kostick & Shih [Page 13]
RFC 1665 SNANAU MIB July 1994
::= { snaNodeAdminEntry 4 }
snaNodeAdminBlockNum OBJECT-TYPE
SYNTAX DisplayString (SIZE(3))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value indicates the block number for this Node
instance. It is the first 3 hexadecimal digits of the
SNA Node id.
A write operation to this object will
not change the operational value reflected
in snaNodeOperBlockNum until the Node has
been re-activated (e.g., after the next initialization
of the SNA services)."
::= { snaNodeAdminEntry 5 }
snaNodeAdminIdNum OBJECT-TYPE
SYNTAX DisplayString (SIZE(5))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value indicates the ID number for this Node
instance. This is the last 5 hexadecimal digits of
the SNA Node id.
A write operation to this object will
not change the operational value reflected
in snaNodeOperIdNum until the Node has
been re-activated (e.g., after the next initialization
of the SNA services)."
::= { snaNodeAdminEntry 6 }
snaNodeAdminEnablingMethod OBJECT-TYPE
SYNTAX INTEGER {
other (1),
startup (2),
demand (3),
onlyMS (4)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value indicates how the Node should be
activated for the first time.
The values have the following meanings:
Kielczewski, Kostick & Shih [Page 14]
RFC 1665 SNANAU MIB July 1994
other (1) - may be used for proprietary methods
not listed in this enumeration,
startup (2) - at SNA services' initialization time
(this is the default),
demand (3) - only when LU is requested by application,
or
onlyMS (4) - by a Management Station only.
A write operation to this object may immediately
change the operational value reflected
in snaNodeOperEnablingMethod depending
on the Agent implementation. If the Agent
implementation accepts immediate changes, then the
behavior of the Node changes immediately and not only
after the next system startup of the SNA services.
An immediate change may only apply when the
current value `demand (3)' is changed to `onlyMS (4)'
and vice versa."
::= { snaNodeAdminEntry 7 }
snaNodeAdminLuTermDefault OBJECT-TYPE
SYNTAX INTEGER {
unbind (1),
termself (2),
rshutd (3),
poweroff(4)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value indicates the desired default method
used to deactivate LUs for this Node
For LU6.2s, `unbind(1)' is the only valid value.
unbind(1) - terminate the LU-LU session by sending
an SNA UNBIND request.
termself(2) - terminate the LU-LU session by sending
an SNA TERM-SELF (Terminate Self) request on
the SSCP-LU session. The SSCP will inform the
remote session LU partner to send an UNBIND
request to terminate the session.
rshutd(3) - terminate the LU-LU session by sending
an SNA RSHUTD (Request ShutDown) request to
the remote session LU partner. The remote LU
will then send an UNBIND request to terminate
the session.
poweroff(4) - terminate the LU-LU session by sending
either an SNA LUSTAT (LU Status) request on
Kielczewski, Kostick & Shih [Page 15]
RFC 1665 SNANAU MIB July 1994
the LU-LU session or an SNA NOTIFY request on
the SSCP-LU session indicating that the LU has
been powered off. Sending both is also
acceptable. The result should be that the
remote session LU partner will send an UNBIND
to terminate the session.
The default behavior indicated by the value of this
object may be overridden for an LU instance. The
override is performed by setting the snaLuAdminTerm
object instance in the snaLuAdminTable to the desired
value.
A write operation to this object may immediately
change the operational value reflected
in snaNodeOperLuTermDefault depending
on the Agent implementation."
::= { snaNodeAdminEntry 8 }
snaNodeAdminMaxLu OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The maximum number of LUs that may be
activated for this Node. For PU2.1, this object
refers to the number of dependent LUs.
A write operation to this object will
not change the operational value reflected
in snaNodeOperMaxLu until the Node has
been re-activated (e.g., after the next initialization
of the SNA services)."
::= { snaNodeAdminEntry 9 }
snaNodeAdminHostDescription OBJECT-TYPE
SYNTAX DisplayString (SIZE(0..128))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value identifies the remote host associated
with this Node. Since SSCP Id's may not be unique
across hosts, the host description
is required to uniquely identify the SSCP.
This object is only applicable to PU2.0 type
Nodes. If the remote host is unknown, then the
value is the null string.
Kielczewski, Kostick & Shih [Page 16]
RFC 1665 SNANAU MIB July 1994
A write operation to this object may immediately
change the operational value reflected
in snaNodeOperHostDescription depending
on the Agent implementation."
::= { snaNodeAdminEntry 10 }
snaNodeAdminStopMethod OBJECT-TYPE
SYNTAX INTEGER {
other (1),
normal (2),
immed (3),
force (4)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value indicates the desired method to be used
by the Agent to stop a Node (i.e., change the Node's
operational state to inactive(1) ).
The values have the following meaning:
other (1) - used for proprietary
methods not listed in this enumeration.
normal(2) - deactivate only when there is no more
activity on this Node (i.e., all data flows
have been completed and all sessions
have been terminated).
immed(3) - deactivate immediately regardless of
current activities on this Node. Wait for
deactivation responses (from remote Node)
before changing the Node state to inactive.
force(4) - deactivate immediately regardless of
current activities on this Node. Do not wait
for deactivation responses (from remote Node)
before changing the Node state to inactive.
A write operation to this object may immediately
change the operational value reflected
in snaNodeOperStopMethod depending
on the Agent implementation."
::= { snaNodeAdminEntry 11 }
snaNodeAdminState OBJECT-TYPE
SYNTAX INTEGER {
inactive (1),
active (2)
}
Kielczewski, Kostick & Shih [Page 17]
RFC 1665 SNANAU MIB July 1994
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value indicates the desired operational
state of the SNA Node. This object is used
by the Management Station to
activate or deactivate the Node.
If the current value in snaNodeOperState is
`active (2)', then setting this object to
`inactive (1)' will initiate the Node shutdown
process using the method indicated
by snaNodeOperStopMethod.
If the current value in snaNodeOperState is
`inactive (1)', then setting this object to
`active (2)' will initiate the
Node's activation.
A Management Station can always set this object to
`active (2)' irrespective of the value in the
snaOperEnablingMethod."
::= { snaNodeAdminEntry 12 }
snaNodeAdminRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object is used by a Management Station to
create or delete the row entry in the
snaNodeAdminTable following
the RowStatus textual convention.
Upon successful creation of
the row, an Agent automatically creates a
corresponding entry in the snaNodeOperTable with
snaNodeOperState equal to `inactive (1)'.
Row deletion can be Management Station or Agent
initiated:
(a) The Management Station can set the value to
`destroy (6)' only when the value of
snaNodeOperState of this Node instance is
`inactive (1)'. The Agent will then delete the rows
corresponding to this Node instance from the
snaNodeAdminTable and the snaNodeOperTable.
(b) The Agent detects that a row is in the
Kielczewski, Kostick & Shih [Page 18]
RFC 1665 SNANAU MIB July 1994
`notReady (3)' state for greater than a
default period of 5 minutes.
(c) All rows with the snaNodeAdminRowStatus object's
value of `notReady (3)' will be removed upon the
next initialization of the SNA services."
::= { snaNodeAdminEntry 13 }
-- ***************************************************************
-- The following object is updated when there is a change to
-- the value of any object in the snaNodeAdminTable.
-- ***************************************************************
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -