📄 rfc1287.txt
字号:
Clark, Chapin, Cerf, Braden, & Hobby [Page 22]
RFC 1287 Future of Internet Architecture December 1991
__________________________________________________________________
Slide 3
SOME CLAIMS -- MY POSITION
We have two different goals:
o Make it possible to build "The Internet"
o Define a protocol suite called Internet
Claim: These goals have very different implications.
The protocols are but a means, though a powerful one.
Claim: If "The Internet" is to succeed and grow, it will
require specific design efforts. This need will continue
for at least another 10 years.
Claim: Uncontrolled growth could lead to chaos.
Claim: A grass-roots solution seems to be the only
means to success. Top-down mandates are powerless.
__________________________________________________________________
Slide 4
OUTLINE OF PRESENTATION
1) The problem space and the solution space.
2) A set of specific questions -- discussion.
3) Return to top-level questions -- discussion.
4) Plan for action -- meta discussion.
Try to separate functional requirements from technical approach.
Understand how we are bounded by our problem space and our
solution space.
Is architecture anything but protocols?
Clark, Chapin, Cerf, Braden, & Hobby [Page 23]
RFC 1287 Future of Internet Architecture December 1991
__________________________________________________________________
Slide 5
WHAT IS THE PROBLEM SPACE?
Routing and addressing:
How big, what topology, and what routing model?
Getting big:
User services, what technology for host and nets?
Divestiture of the Internet:
Accounting, controlling usage and fixing faults.
New services:
Video? Transactions? Distributed computing?
Security:
End node or network? Routers or relays?
__________________________________________________________________
Slide 6
BOUNDING THE SOLUTION SPACE
How far can we migrate from the current state?
o Can we change the IP header (except to OSI)?
o Can we change host requirements in mandatory ways?
o Can we manage a long-term migration objective?
- Consistent direction vs. diverse goals, funding.
Can we assume network-level connectivity?
o Relays are the wave of the future (?)
o Security a key issue; along with conversion.
o Do we need a new "relay-based" architecture?
How "managed" can/must "The Internet" be?
o Can we manage or constrain connectivity?
What protocols are we working with? One or many?
Clark, Chapin, Cerf, Braden, & Hobby [Page 24]
RFC 1287 Future of Internet Architecture December 1991
__________________________________________________________________
Slide 7
THE MULTI-PROTOCOL INTERNET
"Making the problem harder for the good of mankind."
Are we migrating, interoperating, or tolerating multiple protocols?
o Not all protocol suites will have same range of functionality
at the same time.
o "The Internet" will require specific functions.
Claim: Fundamental conflict (not religion or spite):
o Meeting aggressive requirements for the Internet
o Dealing with OSI migration.
Conclusion: One protocol must "lead", and the others must follow.
When do we "switch" to OSI?
Consider every following slide in this context.
__________________________________________________________________
Slide 8
ROUTING and ADDRESSING
What is the target size of "The Internet"?
o How do addresses and routes relate?
o What is the model of topology?
o What solutions are possible?
What range of policy routing is required?
o BGP and IDRP are two answers. What is the question?
o Fixed classes, or variable paths?
o Source controlled routing is a minimum.
How seamless is the needed support for mobile hosts?
o New address class, rebind to local address, use DNS?
Shall we push for Internet multicast?
Clark, Chapin, Cerf, Braden, & Hobby [Page 25]
RFC 1287 Future of Internet Architecture December 1991
__________________________________________________________________
Slide 9
GETTING BIG -- AN OLD TITLE
(Addressing and routing was on previous slide...)
What user services will be needed in the next 10 years?
o Can we construct a plan?
o Do we need architectural changes?
Is there a requirement for dealing better with ranges in
speed, packet sizes, etc.
o Policy to phase out fragmentation?
What range of hosts (things != Unix) will we support?
_________________________________________________________________
Slide 10
DEALING WITH DIVESTITURE
The Internet is composed of parts separately managed and
controlled.
What support is needed for network charging?
o No architecture implies bulk charges and re-billing, pay
for lost packets.
o Do we need controls to supply billing id or routing?
Requirement: we must support links with controlled sharing.
(Simple form is classes based on link id.)
o How general?
Is there an increased need for fault isolation? (I vote yes!)
o How can we find managers to talk to?
o Do we need services in hosts?
Clark, Chapin, Cerf, Braden, & Hobby [Page 26]
RFC 1287 Future of Internet Architecture December 1991
_________________________________________________________________
Slide 11
NEW SERVICES
Shall we support video and audio? Real time? What %?
o Need to plan for input from research. What quality?
o Target date for heads-up to vendors.
Shall we "better" support transactions?
o Will TCP do? VMTP? Presentation? Locking?
What application support veneers are coming?
o Distributed computing -- will it actually happen?
o Information networking?
__________________________________________________________________
Slide 12
SECURITY
Can we persist in claiming the end-node is the only line of defense?
o What can we do inside the network?
o What can ask the host to do?
Do we tolerate relays, or architect them?
Can find a better way to construct security boundaries?
Do we need global authentication?
Do we need new host requirements:
o Logging.
o Authentication.
o Management interfaces.
- Phone number or point of reference.
__________________________________________________________________
Clark, Chapin, Cerf, Braden, & Hobby [Page 27]
RFC 1287 Future of Internet Architecture December 1991
APPENDIX B: Group Membership
Group 1: ROUTING AND ADDRESSING
Dave Clark, MIT [Chair]
Hans-Werner Braun, SDSC
Noel Chiappa, Consultant
Deborah Estrin, USC
Phill Gross, CNRI
Bob Hinden, BBN
Van Jacobson, LBL
Tony Lauck, DEC.
Group 2: MULTI-PROTOCOL ARCHITECTURE
Lyman Chapin, BBN [Chair]
Ross Callon, DEC
Dave Crocker, DEC
Christian Huitema, INRIA
Barry Leiner,
Jon Postel, ISI
Group 3: SECURITY ARCHITECTURE
Vint Cerf, CNRI [Chair]
Steve Crocker, TIS
Steve Kent, BBN
Paul Mockapetris, DARPA
Group 4: TRAFFIC CONTROL AND STATE
Robert Braden, ISI [Chair]
Chuck Davin, MIT
Dave Mills, University of Delaware
Claudio Topolcic, CNRI
Group 5: ADVANCED APPLICATIONS
Russ Hobby, UCDavis [Chair]
Dave Borman, Cray Research
Cliff Lynch, University of California
Joyce K. Reynolds, ISI
Bruce Schatz, University of Arizona
Mike Schwartz, University of Colorado
Greg Vaudreuil, CNRI.
Clark, Chapin, Cerf, Braden, & Hobby [Page 28]
RFC 1287 Future of Internet Architecture December 1991
Security Considerations
Security issues are discussed in Section 4.
Authors' Addresses
David D. Clark
Massachusetts Institute of Technology
Laboratory for Computer Science
545 Main Street
Cambridge, MA 02139
Phone: (617) 253-6003
EMail: ddc@LCS.MIT.EDU
Vinton G. Cerf
Corporation for National Research Initiatives
1895 Preston White Drive, Suite 100
Reston, VA 22091
Phone: (703) 620-8990
EMail: vcerf@nri.reston.va.us
Lyman A. Chapin
Bolt, Beranek & Newman
Mail Stop 20/5b
150 Cambridge Park Drive
Cambridge, MA 02140
Phone: (617) 873-3133
EMail: lyman@BBN.COM
Robert Braden
USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292
Phone: (310) 822-1511
EMail: braden@isi.edu
Russell Hobby
University of California
Computing Services
Davis, CA 95616
Phone: (916) 752-0236
EMail: rdhobby@ucdavis.edu
Clark, Chapin, Cerf, Braden, & Hobby [Page 29]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -