📄 rfc1338.txt
字号:
RFC 1338 Supernetting June 1992
the route 192.24.32.0, mask 255.255.254.0
C6: allocate 192.24.34 and 192.24.35. This block is described by
the route 192.24.34.0, mask 255.255.254.0
Note that if the network provider uses an IGP which can support
classless networks, he can (but doesn't have to) perform
"supernetting" at the point where he connects to his clients and
therefore only maintain six distinct routes for the 36 class-C
network numbers. If not, explicit routes to all 36 class-C networks
will have to be carried by the IGP.
To make this example more realistic, assume that C4 and C5 are multi-
homed through some other service provider, "RB". Further assume the
existence of a client "C7" which was originally connected to "RB" but
has moved to "RA". For this reason, it has a block of network numbers
which are allocated out "RB"'s block of (the next) 2048 class-C
network numbers:
C7: allocate 192.32.0 through 192.32.15. This block is described
by the route 192.32.0, mask 255.255.240.0
For the multi-homed clients, we will assume that C4 is advertised as
primary via "RA" and secondary via "RB"; C5 is primary via "RB" and
secondary via "RA". To connect this mess together, we will assume
that "RA" and "RB" are connected via some common "backbone" provider
"BB".
Graphically, this simple topology looks something like this:
Fuller, Li, Yu, & Varadhan [Page 16]
RFC 1338 Supernetting June 1992
C1
192.24.0.0 -- 192.24.7.0 \ _ 192.32.0.0 - 192.32.15.0
192.24.0.0/255.255.248.0 \ / 192.32.0.0/255.255.240.0
\ / C7
C2 +----+ +----+
192.24.16.0 - 192.24.31.0 \| | | |
192.24.16.0/255.255.240.0 | | _ 192.24.12.0 - 192.24.15.0 _ | |
| | / 192.24.12.0/255.255.252.0 \ | |
C3 -| |/ C4 \| |
192.24.8.0 - 192.24.11.0 | RA | | RB |
192.24.8.0/255.255.252.0 | |___ 192.24.32.0 - 192.24.33.0 ___| |
/| | 192.24.32.0/255.255.254.0 | |
C6 | | C5 | |
192.24.34.0 - 192.24.35.0 | | | |
192.24.34.0/255.255.254.0 | | | |
+----+ +----+
\\ \\
192.24.12.0/255.255.252.0 (C4) || 192.32.12.0/255.255.252.0 (C4) ||
192.24.32.0/255.255.254.0 (C5) || 192.32.32.0/255.255.192.0 (C5) ||
192.32.0.0/255.255.240.0 (C7) || 192.32.0.0/255.248.0.0 (RB) ||
192.24.0.0/255.248.0.0 (RA) || ||
VV VV
+--------------- BACKBONE PEER BB ---------------+
5.2. Routing advertisements
To follow rule #1, RA will need to advertise the block of addresses
that it was given and C7. Since C4 and C5 are multi-homed, they must
also be advertised.
Advertisements from "RA" to "BB" will be:
192.24.12.0/255.255.252.0 primary (advertises C4)
192.24.32.0/255.255.254.0 secondary (advertises C5)
192.32.0.0/255.255.240.0 primary (advertises C7)
192.24.0.0/255.248.0.0 primary (advertises remainder of RA)
For RB, the advertisements must also include C4 and C5 as well as
it's block of addresses. Further, RB may advertise that C7 is
unreachable.
Advertisements from "RB" to "BB" will be:
192.24.12.0/255.255.252.0 secondary (advertises C4)
192.24.32.0/255.255.254.0 primary (advertises C5)
192.32.0.0/255.248.0.0 primary (advertises remainder of RB)
Fuller, Li, Yu, & Varadhan [Page 17]
RFC 1338 Supernetting June 1992
To illustrate the problem alluded to by the "note" in section 4.2,
consider what happens if RA loses connectivity to C7 (the client
which is allocated out of RB's space). In a stateful protocol, RA
will announce to BB that 192.32.0.0/255.255.240.0 has become
unreachable. Now, when BB flushes this information out of its routing
table, any future traffic sent through it for this destination will
be forwarded to RB (where it will be dropped according to Rule #2) by
virtue of RB's less specific match 192.32.0.0/255.248.0.0. While
this does not cause an operational problem (C7 is unreachable in any
case), it does create some extra traffic across "BB" (and may also
prove confusing to a network manager debugging the outage with
"traceroute"). A mechanism to cache such unreachability information
would help here, but is beyond the scope of this document (such a
mechanism is also not implementable in the near-term).
6. Transitioning to a long term solution
This solution does not change the Internet routing and addressing
architectures. Hence, transitioning to a more long term solution is
not affected by the deployment of this plan.
7. Conclusions
We are all aware of the growth in routing complexity, and the rapid
increase in allocation of network numbers. Given the rate at which
this growth is being observed, we expect to run out in a few short
years.
If the inter-domain routing protocol supports carrying network routes
with associated masks, all of the major concerns demonstrated in this
paper would be eliminated.
One of the influential factors which permits maximal exploitation of
the advantages of this plan is the number of people who agree to use
it. It is hoped that having the IAB and the Internet society bless
this plan would go a long way in the wide deployment, and hence
benefit of this plan.
If service providers start charging networks for advertising network
numbers, this would be a very great incentive to share the address
space, and hence the associated costs of advertising routes to
service providers.
8. Recommendations
The NIC should begin to hand out large blocks of class-C addresses to
network service providers. Each block must fall on bit boundaries
and should be large enough to serve the provider for two years.
Fuller, Li, Yu, & Varadhan [Page 18]
RFC 1338 Supernetting June 1992
Further, the NIC should distribute very large blocks to continental
and national network service organizations to allow additional levels
of aggregation to take place at the major backbone networks.
Service providers will further allocate power-of-two blocks of
class-C addresses from their address space to their subscribers.
All organizations, including those which are multi-homed, should
obtain address space from their provider (or one of their providers,
in the case of the multi-homed). These blocks should also fall on
bit boundaries to permit easy route aggregation.
To allow effective use of this new addressing plan to reduce
propagated routing information, appropriate IETF WGs will specify the
modifications needed to Inter-Domain routing protocols.
Implementation and deployment of these modifications should occur as
quickly as possible.
9. Bibliography
[RFC1247] Moy, J, "The OSPF Specification Version 2", January 1991.
10. Security Considerations
Security issues are not discussed in this memo.
11. Authors' Addresses
Vince Fuller
BARRNet
Pine Hall 115
Stanford, CA, 94305-4122
email: vaf@Stanford.EDU
Tony Li
cisco Systems, Inc.
1525 O'Brien Drive
Menlo Park, CA 94025
email: tli@cisco.com
Jessica (Jie Yun) Yu
Merit Network, Inc.
1071 Beal Ave.
Ann Arbor, MI 48109
email: jyy@merit.edu
Fuller, Li, Yu, & Varadhan [Page 19]
RFC 1338 Supernetting June 1992
Kannan Varadhan
Internet Engineer, OARnet
1224, Kinnear Road,
Columbus, OH 43212
email: kannan@oar.net
Fuller, Li, Yu, & Varadhan [Page 20]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -