⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rfc2668.txt

📁 RFC 的详细文档!
💻 TXT
📖 第 1 页 / 共 5 页
字号:
      dot3MauType1000BaseCXHD OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "Copper over 150-Ohm balanced cable (per 802.3
                      section 39), half duplex mode"
          ::= { dot3MauType 27 }

      dot3MauType1000BaseCXFD OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "Copper over 150-Ohm balanced cable (per 802.3
                      section 39), full duplex mode"
          ::= { dot3MauType 28 }

      dot3MauType1000BaseTHD OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "Four-pair Category 5 UTP (per 802.3 section
                      40), half duplex mode"
          ::= { dot3MauType 29 }

      dot3MauType1000BaseTFD OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "Four-pair Category 5 UTP (per 802.3 section
                      40), full duplex mode"
          ::= { dot3MauType 30 }

      --
      -- The Basic Repeater MAU Table
      --

      rpMauTable OBJECT-TYPE
          SYNTAX      SEQUENCE OF RpMauEntry
          MAX-ACCESS  not-accessible
          STATUS      current
          DESCRIPTION "Table of descriptive and status information
                      about the MAU(s) attached to the ports of a
                      repeater."
          ::= { dot3RpMauBasicGroup 1 }

      rpMauEntry OBJECT-TYPE
          SYNTAX      RpMauEntry
          MAX-ACCESS  not-accessible
          STATUS      current
          DESCRIPTION "An entry in the table, containing information
                      about a single MAU."
          INDEX       { rpMauGroupIndex,
                        rpMauPortIndex,
                        rpMauIndex
                      }
          ::= { rpMauTable 1 }



Smith, et al.               Standards Track                    [Page 12]

RFC 2668                     802.3 MAU MIB                   August 1999


      RpMauEntry ::=
          SEQUENCE {
              rpMauGroupIndex                     Integer32,
              rpMauPortIndex                      Integer32,
              rpMauIndex                          Integer32,
              rpMauType                           OBJECT IDENTIFIER,
              rpMauStatus                         INTEGER,
              rpMauMediaAvailable                 INTEGER,
              rpMauMediaAvailableStateExits       Counter32,
              rpMauJabberState                    INTEGER,
              rpMauJabberingStateEnters           Counter32,
              rpMauFalseCarriers                  Counter32
      }

      rpMauGroupIndex OBJECT-TYPE
          SYNTAX      Integer32 (1..2147483647)
          MAX-ACCESS  read-only
          STATUS      current
          DESCRIPTION "This variable uniquely identifies the group
                      containing the port to which the MAU described
                      by this entry is connected.

                      Note:  In practice, a group will generally be
                      a field-replaceable unit (i.e., module, card,
                      or board) that can fit in the physical system
                      enclosure, and the group number will correspond
                      to a number marked on the physical enclosure.

                      The group denoted by a particular value of this
                      object is the same as the group denoted by the
                      same value of rptrGroupIndex."
          REFERENCE   "Reference RFC 2108, rptrGroupIndex."
          ::= { rpMauEntry 1 }

      rpMauPortIndex OBJECT-TYPE
          SYNTAX      Integer32 (1..2147483647)
          MAX-ACCESS  read-only
          STATUS      current
          DESCRIPTION "This variable uniquely identifies the repeater
                      port within group rpMauGroupIndex to which the
                      MAU described by this entry is connected."
          REFERENCE   "Reference RFC 2108, rptrPortIndex."
          ::= { rpMauEntry 2 }

      rpMauIndex OBJECT-TYPE
          SYNTAX      Integer32 (1..2147483647)
          MAX-ACCESS  read-only
          STATUS      current



Smith, et al.               Standards Track                    [Page 13]

RFC 2668                     802.3 MAU MIB                   August 1999


          DESCRIPTION "This variable uniquely identifies the MAU
                      described by this entry from among other
                      MAUs connected to the same port
                      (rpMauPortIndex)."
          REFERENCE   "[IEEE 802.3 Std], 30.5.1.1.1, aMAUID."
          ::= { rpMauEntry 3 }

      rpMauType OBJECT-TYPE
          SYNTAX      OBJECT IDENTIFIER
          MAX-ACCESS  read-only
          STATUS      current
          DESCRIPTION "This object identifies the MAU type.  An
                      initial set of MAU types are defined above.  The
                      assignment of OBJECT IDENTIFIERs to new types of
                      MAUs is managed by the IANA.  If the MAU type is
                      unknown, the object identifier

                      unknownMauType OBJECT IDENTIFIER ::= { 0 0 }

                      is returned.  Note that unknownMauType is a
                      syntactically valid object identifier, and any
                      conformant implementation of ASN.1 and the BER
                      must be able to generate and recognize this
                      value."
          REFERENCE   "[IEEE 802.3 Std], 30.5.1.1.2, aMAUType."
          ::= { rpMauEntry 4 }

      rpMauStatus OBJECT-TYPE
          SYNTAX      INTEGER {
                          other(1),
                          unknown(2),
                          operational(3),
                          standby(4),
                          shutdown(5),
                          reset(6)
                      }
          MAX-ACCESS  read-write
          STATUS      current
          DESCRIPTION "The current state of the MAU.  This object MAY
                      be implemented as a read-only object by those
                      agents and MAUs that do not implement software
                      control of the MAU state.  Some agents may not
                      support setting the value of this object to some
                      of the enumerated values.

                      The value other(1) is returned if the MAU is in
                      a state other than one of the states 2 through
                      6.



Smith, et al.               Standards Track                    [Page 14]

RFC 2668                     802.3 MAU MIB                   August 1999


                      The value unknown(2) is returned when the MAU's
                      true state is unknown; for example, when it is
                      being initialized.

                      A MAU in the operational(3) state is fully
                      functional, operates, and passes signals to its
                      attached DTE or repeater port in accordance to
                      its specification.

                      A MAU in standby(4) state forces DI and CI to
                      idle and the media transmitter to idle or fault,
                      if supported.  Standby(4) mode only applies to
                      link type MAUs.  The state of
                      rpMauMediaAvailable is unaffected.

                      A MAU in shutdown(5) state assumes the same
                      condition on DI, CI, and the media transmitter
                      as though it were powered down or not connected.
                      The MAU MAY return other(1) value for the
                      rpMauJabberState and rpMauMediaAvailable objects
                      when it is in this state.  For an AUI, this
                      state will remove power from the AUI.

                      Setting this variable to the value reset(6)
                      resets the MAU in the same manner as a
                      power-off, power-on cycle of at least one-half
                      second would.  The agent is not required to
                      return the value reset (6).

                      Setting this variable to the value
                      operational(3), standby(4), or shutdown(5)
                      causes the MAU to assume the respective state
                      except that setting a mixing-type MAU or an AUI
                      to standby(4) will cause the MAU to enter the
                      shutdown state."
          REFERENCE   "[IEEE 802.3 Std], 30.5.1.1.7, aMAUAdminState,
                          30.5.1.2.2, acMAUAdminControl, and 30.5.1.2.1,
                      acResetMAU."
          ::= { rpMauEntry 5 }

      rpMauMediaAvailable OBJECT-TYPE
          SYNTAX      INTEGER {
                          other(1),
                          unknown(2),
                          available(3),
                          notAvailable(4),
                          remoteFault(5),
                          invalidSignal(6),



Smith, et al.               Standards Track                    [Page 15]

RFC 2668                     802.3 MAU MIB                   August 1999


                          remoteJabber(7),
                          remoteLinkLoss(8),
                          remoteTest(9),
                          offline(10),
                          autoNegError(11)
                      }
          MAX-ACCESS  read-only
          STATUS      current
          DESCRIPTION "If the MAU is a link or fiber type (FOIRL,
                      10BASE-T, 10BASE-F) then this is equivalent to
                      the link test fail state/low light function.
                      For an AUI or a coax (including broadband) MAU
                      this indicates whether or not loopback is
                      detected on the DI circuit.  The value of this
                      attribute persists between packets for MAU types
                      AUI, 10BASE5, 10BASE2, 10BROAD36, and 10BASE-FP.

                      The value other(1) is returned if the
                      mediaAvailable state is not one of 2 through 11.

                      The value unknown(2) is returned when the MAU's
                      true state is unknown; for example, when it is
                      being initialized.  At power-up or following a
                      reset, the value of this attribute will be
                      unknown for AUI, coax, and 10BASE-FP MAUs.  For
                      these MAUs loopback will be tested on each
                      transmission during which no collision is
                      detected.  If DI is receiving input when DO
                      returns to IDL after a transmission and there
                      has been no collision during the transmission
                      then loopback will be detected.  The value of
                      this attribute will only change during
                      non-collided transmissions for AUI, coax, and
                      10BASE-FP MAUs.

                      For 100Mbps and 1000Mbps MAUs, the enumerations
                      match the states within the respective link
                      integrity state diagrams, fig 32-16, 23-12 and
                      24-15 of sections 32, 23 and 24 of [16].  Any
                      MAU which implements management of
                      auto-negotiation will map remote fault
                      indication to remote fault.

                      The value available(3) indicates that the link,
                      light, or loopback is normal.  The value
                      notAvailable(4) indicates link loss, low light,
                      or no loopback.




Smith, et al.               Standards Track                    [Page 16]

RFC 2668                     802.3 MAU MIB                   August 1999


                      The value remoteFault(5) indicates that a fault
                      has been detected at the remote end of the link.
                      This value applies to 10BASE-FB, 100BASE-T4 Far
                      End Fault Indication and non-specified remote
                      faults from a system running auto-negotiation.
                      The values remoteJabber(7), remoteLinkLoss(8),
                      and remoteTest(9) SHOULD be used instead of
                      remoteFault(5) where the reason for remote fault
                      is identified in the remote signaling protocol.

                      The value invalidSignal(6) indicates that an
                      invalid signal has been received from the other
                      end of the link.  InvalidSignal(6) applies only
                      to MAUs of type 10BASE-FB.

                      Where an IEEE Std 802.3u-1995 clause 22 MII
                      is present, a logic one in the remote fault bit
                      (reference section 22.2.4.2.8 of that document)
                      maps to the value remoteFault(5), and a logic
                      zero in the link status bit (reference section
                      22.2.4.2.10 of that document) maps to the value
                      notAvailable(4).  The value notAvailable(4)
                      takes precedence over the value remoteFault(5).

                      Any MAU that implements management of clause 37
                      Auto-Negotiation will map the received Remote
                      Fault (RF1 and RF2) bit values for Offline to
                      offline(10), Link Failure to remoteFault(5) and
                      Auto-Negotiation Error to autoNegError(11)."

          REFERENCE   "[IEEE 802.3 Std], 30.5.1.1.4, aMediaAvailable."

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -