📄 rfc1421.txt
字号:
is inappropriate to forward directly to a third party a message that
is ENCRYPTED because recipients of such a message would not have
access to the DEK required to decrypt the message. Instead, the user
forwarding the message must transform the ENCRYPTED message into a
MIC-ONLY or MIC-CLEAR form prior to forwarding. Thus, in order to
comply with this RFC, a PEM implementation must provide a facility to
enable a user to perform this transformation, while preserving the
MIC associated with the original message.
If a user wishes PEM-provided confidentiality protection for
transmitted information, such information must occur in the
encapsulated text of an ENCRYPTED PEM message, not in the enclosing
MTS header or PEM encapsulated header. If a user wishes to avoid
Linn [Page 16]
RFC 1421 Privacy Enhancement for Electronic Mail February 1993
Encapsulated Message
Pre-Encapsulation Boundary (Pre-EB)
-----BEGIN PRIVACY-ENHANCED MESSAGE-----
Encapsulated Header Portion
(Contains encryption control fields inserted in plaintext.
Examples include "DEK-Info:" and "Key-Info:".
Note that, although these control fields have line-oriented
representations similar to RFC 822 header fields, the set
of fields valid in this context is disjoint from those used
in RFC 822 processing.)
Blank Line
(Separates Encapsulated Header from subsequent
Encapsulated Text Portion)
Encapsulated Text Portion
(Contains message data encoded as specified in Section 4.3.)
Post-Encapsulation Boundary (Post-EB)
-----END PRIVACY-ENHANCED MESSAGE-----
Encapsulated Message Format
Figure 1
disclosing the actual subject of a message to unintended parties, it
is suggested that the enclosing MTS header contain a "Subject:" field
indicating that "Encrypted Mail Follows".
If an integrity-protected representation of information which occurs
within an enclosing header (not necessarily in the same format as
that in which it occurs within that header) is desired, that data can
be included within the encapsulated text portion in addition to its
inclusion in the enclosing MTS header. For example, an originator
wishing to provide recipients with a protected indication of a
message's position in a series of messages could include within the
encapsulated text a copy of a timestamp or message counter value
possessing end-to-end significance and extracted from an enclosing
MTS header field. (Note: mailbox specifiers as entered by end users
incorporate local conventions and are subject to modification at
intermediaries, so inclusion of such specifiers within encapsulated
text should not be regarded as a suitable alternative to the
authentication semantics defined in RFC 1422 and based on X.500
Distinguished Names.) The set of header information (if any) included
within the encapsulated text of messages is a local matter, and this
Linn [Page 17]
RFC 1421 Privacy Enhancement for Electronic Mail February 1993
RFC does not specify formatting conventions to distinguish replicated
header fields from other encapsulated text.
4.5 Mail for Mailing Lists
When mail is addressed to mailing lists, two different methods of
processing can be applicable: the IK-per-list method and the IK-per-
recipient method. Hybrid approaches are also possible, as in the
case of IK-per-list protection of a message on its path from an
originator to a PEM-equipped mailing list exploder, followed by IK-
per-recipient protection from the exploder to individual list
recipients.
If a message's originator is equipped to expand a destination mailing
list into its individual constituents and elects to do so (IK-per-
recipient), the message's DEK (and, in the symmetric key management
case, MIC) will be encrypted under each per-recipient IK and all such
encrypted representations will be incorporated into the transmitted
message. Note that per-recipient encryption is required only for the
relatively small DEK and MIC quantities carried in the "Key-Info:"
field, not for the message text which is, in general, much larger.
Although more IKs are involved in processing under the IK-per-
recipient method, the pairwise IKs can be individually revoked and
possession of one IK does not enable a successful masquerade of
another user on the list.
If a message's originator addresses a message to a list name or
alias, use of an IK associated with that name or alias as a entity
(IK-per-list), rather than resolution of the name or alias to its
constituent destinations, is implied. Such an IK must, therefore, be
available to all list members. Unfortunately, it implies an
undesirable level of exposure for the shared IK, and makes its
revocation difficult. Moreover, use of the IK-per-list method allows
any holder of the list's IK to masquerade as another originator to
the list for authentication purposes.
Pure IK-per-list key management in the asymmetric case (with a common
private key shared among multiple list members) is particularly
disadvantageous in the asymmetric environment, as it fails to
preserve the forwardable authentication and non-repudiation
characteristics which are provided for other messages in this
environment. Use of a hybrid approach with a PEM-capable exploder is
therefore particularly recommended for protection of mailing list
traffic when asymmetric key management is used; such an exploder
would reduce (per discussion in Section 4.4 of this RFC) incoming
ENCRYPTED messages to MIC-ONLY or MIC-CLEAR form before forwarding
them (perhaps re-encrypted under individual, per-recipient keys) to
list members.
Linn [Page 18]
RFC 1421 Privacy Enhancement for Electronic Mail February 1993
4.6 Summary of Encapsulated Header Fields
This section defines the syntax and semantics of the encapsulated
header fields to be added to messages in the course of privacy
enhancement processing.
The fields are presented in three groups. Normally, the groups will
appear in encapsulated headers in the order in which they are shown,
though not all fields in each group will appear in all messages. The
following figures show the appearance of small example encapsulated
messages. Figure 2 assumes the use of symmetric cryptography for key
management. Figure 3 illustrates an example encapsulated ENCRYPTED
message in which asymmetric key management is used.
-----BEGIN PRIVACY-ENHANCED MESSAGE-----
Proc-Type: 4,ENCRYPTED
Content-Domain: RFC822
DEK-Info: DES-CBC,F8143EDE5960C597
Originator-ID-Symmetric: linn@zendia.enet.dec.com,,
Recipient-ID-Symmetric: linn@zendia.enet.dec.com,ptf-kmc,3
Key-Info: DES-ECB,RSA-MD2,9FD3AAD2F2691B9A,
B70665BB9BF7CBCDA60195DB94F727D3
Recipient-ID-Symmetric: pem-dev@tis.com,ptf-kmc,4
Key-Info: DES-ECB,RSA-MD2,161A3F75DC82EF26,
E2EF532C65CBCFF79F83A2658132DB47
LLrHB0eJzyhP+/fSStdW8okeEnv47jxe7SJ/iN72ohNcUk2jHEUSoH1nvNSIWL9M
8tEjmF/zxB+bATMtPjCUWbz8Lr9wloXIkjHUlBLpvXR0UrUzYbkNpk0agV2IzUpk
J6UiRRGcDSvzrsoK+oNvqu6z7Xs5Xfz5rDqUcMlK1Z6720dcBWGGsDLpTpSCnpot
dXd/H5LMDWnonNvPCwQUHt==
-----END PRIVACY-ENHANCED MESSAGE-----
Example Encapsulated Message (Symmetric Case)
Figure 2
Figure 4 illustrates an example encapsulated MIC-ONLY message in
which asymmetric key management is used; since no per-recipient keys
are involved in preparation of asymmetric-case MIC-ONLY messages,
this example should be processable for test purposes by arbitrary PEM
implementations.
Fully-qualified domain names (FQDNs) for hosts, appearing in the
mailbox names found in entity identifier subfields of "Originator-
ID-Symmetric:" and "Recipient-ID-Symmetric:" fields, are processed in
a case-insensitive fashion. Unless specified to the contrary, other
field arguments (including the user name components of mailbox names)
Linn [Page 19]
RFC 1421 Privacy Enhancement for Electronic Mail February 1993
are to be processed in a case-sensitive fashion.
In most cases, numeric quantities are represented in header fields as
contiguous strings of hexadecimal digits, where each digit is
represented by a character from the ranges "0"-"9" or upper case
"A"-"F". Since public-key certificates and quantities encrypted
Linn [Page 20]
RFC 1421 Privacy Enhancement for Electronic Mail February 1993
-----BEGIN PRIVACY-ENHANCED MESSAGE-----
Proc-Type: 4,ENCRYPTED
Content-Domain: RFC822
DEK-Info: DES-CBC,BFF968AA74691AC1
Originator-Certificate:
MIIBlTCCAScCAWUwDQYJKoZIhvcNAQECBQAwUTELMAkGA1UEBhMCVVMxIDAeBgNV
BAoTF1JTQSBEYXRhIFNlY3VyaXR5LCBJbmMuMQ8wDQYDVQQLEwZCZXRhIDExDzAN
BgNVBAsTBk5PVEFSWTAeFw05MTA5MDQxODM4MTdaFw05MzA5MDMxODM4MTZaMEUx
CzAJBgNVBAYTAlVTMSAwHgYDVQQKExdSU0EgRGF0YSBTZWN1cml0eSwgSW5jLjEU
MBIGA1UEAxMLVGVzdCBVc2VyIDEwWTAKBgRVCAEBAgICAANLADBIAkEAwHZHl7i+
yJcqDtjJCowzTdBJrdAiLAnSC+CnnjOJELyuQiBgkGrgIh3j8/x0fM+YrsyF1u3F
LZPVtzlndhYFJQIDAQABMA0GCSqGSIb3DQEBAgUAA1kACKr0PqphJYw1j+YPtcIq
iWlFPuN5jJ79Khfg7ASFxskYkEMjRNZV/HZDZQEhtVaU7Jxfzs2wfX5byMp2X3U/
5XUXGx7qusDgHQGs7Jk9W8CW1fuSWUgN4w==
Key-Info: RSA,
I3rRIGXUGWAF8js5wCzRTkdhO34PTHdRZY9Tuvm03M+NM7fx6qc5udixps2Lng0+
wGrtiUm/ovtKdinz6ZQ/aQ==
Issuer-Certificate:
MIIB3DCCAUgCAQowDQYJKoZIhvcNAQECBQAwTzELMAkGA1UEBhMCVVMxIDAeBgNV
BAoTF1JTQSBEYXRhIFNlY3VyaXR5LCBJbmMuMQ8wDQYDVQQLEwZCZXRhIDExDTAL
BgNVBAsTBFRMQ0EwHhcNOTEwOTAxMDgwMDAwWhcNOTIwOTAxMDc1OTU5WjBRMQsw
CQYDVQQGEwJVUzEgMB4GA1UEChMXUlNBIERhdGEgU2VjdXJpdHksIEluYy4xDzAN
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -