📄 rfc1421.txt
字号:
3. address list accuracy,
4. routing control,
5. issues relating to the casual serial reuse of PCs by
multiple users,
6. assurance of message receipt and non-deniability of receipt,
7. automatic association of acknowledgments with the messages
to which they refer, and
8. message duplicate detection, replay prevention, or other
stream-oriented services
4. Processing of Messages
4.1 Message Processing Overview
This subsection provides a high-level overview of the components and
processing steps involved in electronic mail privacy enhancement
processing. Subsequent subsections will define the procedures in
more detail.
4.1.1 Types of Keys
A two-level keying hierarchy is used to support PEM transmission:
1. Data Encrypting Keys (DEKs) are used for encryption of
message text and (with certain choices among a set of
alternative algorithms) for computation of message integrity
check (MIC) quantities. In the asymmetric key management
environment, DEKs are also used to encrypt the signed
representations of MICs in PEM messages to which
confidentiality has been applied. DEKs are generated
individually for each transmitted message; no
predistribution of DEKs is needed to support PEM
transmission.
2. Interchange Keys (IKs) are used to encrypt DEKs for
transmission within messages. Ordinarily, the same IK will
be used for all messages sent from a given originator to a
given recipient over a period of time. Each transmitted
message includes a representation of the DEK(s) used for
message encryption and/or MIC computation, encrypted under
an individual IK per named recipient. The representation is
Linn [Page 6]
RFC 1421 Privacy Enhancement for Electronic Mail February 1993
associated with Originator-ID and Recipient-ID fields
(defined in different forms so as to distinguish symmetric
from asymmetric cases), which allow each individual
recipient to identify the IK used to encrypt DEKs and/or
MICs for that recipient's use. Given an appropriate IK, a
recipient can decrypt the corresponding transmitted DEK
representation, yielding the DEK required for message text
decryption and/or MIC validation. The definition of an IK
differs depending on whether symmetric or asymmetric
cryptography is used for DEK encryption:
2a. When symmetric cryptography is used for DEK
encryption, an IK is a single symmetric key shared
between an originator and a recipient. In this
case, the same IK is used to encrypt MICs as well
as DEKs for transmission. Version/expiration
information and IA identification associated with
the originator and with the recipient must be
concatenated in order to fully qualify a symmetric
IK.
2b. When asymmetric cryptography is used, the IK
component used for DEK encryption is the public
component [8] of the recipient. The IK component
used for MIC encryption is the private component of
the originator, and therefore only one encrypted
MIC representation need be included per message,
rather than one per recipient. Each of these IK
components can be fully qualified in a Recipient-ID
or Originator-ID field, respectively.
Alternatively, an originator's IK component may be
determined from a certificate carried in an
"Originator-Certificate:" field.
4.1.2 Processing Procedures
When PEM processing is to be performed on an outgoing message, a DEK
is generated [1] for use in message encryption and (if a chosen MIC
algorithm requires a key) a variant of the DEK is formed for use in
MIC computation. DEK generation can be omitted for the case of a
message where confidentiality is not to be applied, unless a chosen
MIC computation algorithm requires a DEK. Other parameters (e.g.,
Initialization Vectors (IVs)) as required by selected encryption
algorithms are also generated.
One or more Originator-ID and/or "Originator-Certificate:" fields are
included in a PEM message's encapsulated header to provide recipients
with an identification component for the IK(s) used for message
Linn [Page 7]
RFC 1421 Privacy Enhancement for Electronic Mail February 1993
processing. All of a message's Originator-ID and/or "Originator-
Certificate:" fields are assumed to correspond to the same principal;
the facility for inclusion of multiple such fields accomodates the
prospect that different keys, algorithms, and/or certification paths
may be required for processing by different recipients. When a
message includes recipients for which asymmetric key management is
employed as well as recipients for which symmetric key management is
employed, a separate Originator-ID or "Originator-Certificate:" field
precedes each set of recipients.
In the symmetric case, per-recipient IK components are applied for
each individually named recipient in preparation of ENCRYPTED, MIC-
ONLY, and MIC-CLEAR messages. A corresponding "Recipient-ID-
Symmetric:" field, interpreted in the context of the most recent
preceding "Originator-ID-Symmetric:" field, serves to identify each
IK. In the asymmetric case, per-recipient IK components are applied
only for ENCRYPTED messages, are independent of originator-oriented
header elements, and are identified by "Recipient-ID-Asymmetric:"
fields. Each Recipient-ID field is followed by a "Key-Info:" field,
which transfers the message's DEK encrypted under the IK appropriate
for the specified recipient.
When symmetric key management is used for a given recipient, the
"Key-Info:" field following the corresponding "Recipient-ID-
Symmetric:" field also transfers the message's computed MIC,
encrypted under the recipient's IK. When asymmetric key management is
used, a "MIC-Info:" field associated with an "Originator-ID-
Asymmetric:" or "Originator-Certificate:" field carries the message's
MIC, asymmetrically signed using the private component of the
originator. If the PEM message is of type ENCRYPTED (as defined in
Section 4.6.1.1.1 of this RFC), the asymmetrically signed MIC is
symmetrically encrypted using the same DEK, algorithm, encryption
mode and other cryptographic parameters as used to encrypt the
message text, prior to inclusion in the "MIC-Info:" field.
4.1.2.1 Processing Steps
A four-phase transformation procedure is employed in order to
represent encrypted message text in a universally transmissible form
and to enable messages encrypted on one type of host computer to be
decrypted on a different type of host computer. A plaintext message
is accepted in local form, using the host's native character set and
line representation. The local form is converted to a canonical
message text representation, defined as equivalent to the inter-SMTP
representation of message text. This canonical representation forms
the input to the MIC computation step (applicable to ENCRYPTED, MIC-
ONLY, and MIC-CLEAR messages) and the encryption process (applicable
to ENCRYPTED messages only).
Linn [Page 8]
RFC 1421 Privacy Enhancement for Electronic Mail February 1993
For ENCRYPTED PEM messages, the canonical representation is padded as
required by the encryption algorithm, and this padded canonical
representation is encrypted. The encrypted text (for an ENCRYPTED
message) or the unpadded canonical form (for a MIC-ONLY message) is
then encoded into a printable form. The printable form is composed
of a restricted character set which is chosen to be universally
representable across sites, and which will not be disrupted by
processing within and between MTS entities. MIC-CLEAR PEM messages
omit the printable encoding step.
The output of the previous processing steps is combined with a set of
header fields carrying cryptographic control information. The
resulting PEM message is passed to the electronic mail system to be
included within the text portion of a transmitted message. There is
no requirement that a PEM message comprise the entirety of an MTS
message's text portion; this allows PEM-protected information to be
accompanied by (unprotected) annotations. It is also permissible for
multiple PEM messages (and associated unprotected text, outside the
PEM message boundaries) to be represented within the encapsulated
text of a higher-level PEM message. PEM message signatures are
forwardable when asymmetric key management is employed; an authorized
recipient of a PEM message with confidentiality applied can reduce
that message to a signed but unencrypted form for forwarding purposes
or can re-encrypt that message for subsequent transmission.
When a PEM message is received, the cryptographic control fields
within its encapsulated header provide the information required for
each authorized recipient to perform MIC validation and decryption of
the received message text. For ENCRYPTED and MIC-ONLY messages, the
printable encoding is converted to a bitstring. Encrypted portions
of the transmitted message are decrypted. The MIC is validated.
Then, the recipient PEM process converts the canonical representation
to its appropriate local form.
4.1.2.2 Error Cases
A variety of error cases may occur and be detected in the course of
processing a received PEM message. The specific actions to be taken
in response to such conditions are local matters, varying as
functions of user preferences and the type of user interface provided
by a particular PEM implementation, but certain general
recommendations are appropriate. Syntactically invalid PEM messages
should be flagged as such, preferably with collection of diagnostic
information to support debugging of incompatibilities or other
failures. RFC 1422 defines specific error processing requirements
relevant to the certificate-based key management mechanisms defined
therein.
Linn [Page 9]
RFC 1421 Privacy Enhancement for Electronic Mail February 1993
Syntactically valid PEM messages which yield MIC failures raise
special concern, as they may result from attempted attacks or forged
messages. As such, it is unsuitable to display their contents to
recipient users without first indicating the fact that the contents'
authenticity and integrity cannot be guaranteed and then receiving
positive user confirmation of such a warning. MIC-CLEAR messages
(discussed in Section 4.6.1.1.3 of this RFC) raise special concerns,
as MIC failures on such messages may occur for a broader range of
benign causes than are applicable to other PEM message types.
4.2 Encryption Algorithms, Modes, and Parameters
For use in conjunction with this RFC, RFC 1423 defines the
appropriate algorithms, modes, and associated identifiers to be used
for encryption of message text with DEKs.
The mechanisms defined in this RFC incorporate facilities for
transmission of cryptographic parameters (e.g., pseudorandom
Initializing Vectors (IVs)) with PEM messages to which the
confidentiality service is applied, when required by symmetric
message encryption algorithms and modes specified in RFC 1423.
Certain operations require encryption of DEKs, MICs, and digital
signatures under an IK for purposes of transmission. A header
facility indicates the mode in which the IK is used for encryption.
RFC 1423 specifies encryption algorithm and mode identifiers and
minimum essential support requirements for key encryption processing.
RFC 1422 specifies asymmetric, certificate-based key management
procedures based on CCITT Recommendation X.509 to support the message
processing procedures defined in this document. Support for the key
management approach defined in RFC 1422 is strongly recommended. The
message processing procedures can also be used with symmetric key
management, given prior distribution of suitable symmetric IKs, but
no current RFCs specify key distribution procedures for such IKs.
4.3 Privacy Enhancement Message Transformations
4.3.1 Constraints
An electronic mail encryption mechanism must be compatible with the
transparency constraints of its underlying electronic mail
facilities. These constraints are generally established based on
expected user requirements and on the characteristics of anticipated
endpoint and transport facilities. An encryption mechanism must also
be compatible with the local conventions of the computer systems
which it interconnects. Our approach uses a canonicalization step to
abstract out local conventions and a subsequent encoding step to
Linn [Page 10]
RFC 1421 Privacy Enhancement for Electronic Mail February 1993
conform to the characteristics of the underlying mail transport
medium (SMTP). The encoding conforms to SMTP constraints. Section
4.5 of RFC 821 [2] details SMTP's transparency constraints.
To prepare a message for SMTP transmission, the following
requirements must be met:
1. All characters must be members of the 7-bit ASCII character
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -