📄 rfc983.txt
字号:
Network Working Group D. E. Cass (NRTC)
Request for Comments: 983 M. T. Rose (NRTC)
April 1986
ISO Transport Services on Top of the TCP
Status of This Memo
This memo describes a proposed protocol standard for the ARPA
Internet community. The intention is that hosts in the ARPA-Internet
that choose to implement ISO TSAP services on top of the TCP be
expected to adopt and implement this standard. Suggestions for
improvement are encouraged. Distribution of this memo is unlimited.
1. Introduction and Philosophy
The ARPA Internet community has a well-developed, mature set of
transport and internetwork protocols (TCP/IP), which are quite
successful in offering network and transport services to end-users.
The CCITT and the ISO have defined various session, presentation, and
application recommendations which have been adopted by the
international community and numerous vendors. To the largest extent
possible, it is desirable to offer these higher level services
directly in the ARPA Internet, without disrupting existing
facilities. This permits users to develop expertise with ISO and
CCITT applications which previously were not available in the ARPA
Internet. It also permits a more graceful transition strategy from
TCP/IP-based networks to ISO-based networks in the medium- and
long-term.
There are two basic approaches which can be taken when "porting" an
ISO or CCITT application to a TCP/IP environment. One approach is to
port each individual application separately, developing local
protocols on top of the TCP. Although this is useful in the
short-term (since special-purpose interfaces to the TCP can be
developed quickly), it lacks generality.
A second approach is based on the observation that both the ARPA
Internet protocol suite and the ISO protocol suite are both layered
systems (though the former uses layering from a more pragmatic
perspective). A key aspect of the layering principle is that of
layer-independence. Although this section is redundant for most
readers, a slight bit of background material is necessary to
introduce this concept.
Externally, a layer is defined by two definitions:
a service-offered definition, which describes the services
provided by the layer and the interfaces it provides to access
those services; and,
Cass & Rose [Page 1]
RFC 983 April 1986
ISO Transport Services on Top of the TCP
a service-required definitions, which describes the services used
by the layer and the interfaces it uses to access those services.
Collectively, all of the entities in the network which co-operate to
provide the service are known as the service-provider. Individually,
each of these entities is known as a service-peer.
Internally, a layer is defined by one definition:
a protocol definition, which describes the rules which each
service-peer uses when communicating with other service-peers.
Putting all this together, the service-provider uses the protocol and
services from the layer below to offer the its service to the layer
above. Protocol verification, for instance, deals with proving that
this in fact happens (and is also a fertile field for many Ph.D.
dissertations in computer science).
The concept of layer-independence quite simply is:
IF one preserves the services offered by the service-provider
THEN the service-user is completely naive with respect to the
protocol which the service-peers use
For the purposes of this memo, we will use the layer-independence to
define a Transport Service Access Point (TSAP) which appears to be
identical to the services and interfaces offered by the ISO/CCITT
TSAP (as defined in [ISO-8072]), but we will base the internals of
this TSAP on TCP/IP (as defined in [RFC-793,RFC791]), not on the
ISO/CCITT transport and network protocols. Hence, ISO/CCITT higher
level layers (all session, presentation, and application entities)
can operate fully without knowledge of the fact that they are running
on a TCP/IP internetwork.
The authors hope that the preceding paragraph will not come as a
shock to most readers. However, an ALARMING number of people seem to
think that layering is just a way of cutting up a large problem into
smaller ones, *simply* for the sake of cutting it up. Although
layering tends to introduce modularity into an architecture, and
modularity tends to introduce sanity into implementations (both
conceptual and physical implementations), modularity, per se, is not
the end goal. Flexibility IS.
Cass & Rose [Page 2]
RFC 983 April 1986
ISO Transport Services on Top of the TCP
2. Motivation
In migrating from the use of TCP/IP to the ISO protocols, there are
several strategies that one might undertake. This memo was written
with one particular strategy in mind.
The particular migration strategy which this memo uses is based on
the notion of gatewaying between the TCP/IP and ISO protocol suites
at the transport layer. There are two strong arguments for this
approach:
a. Experience teaches us that it takes just as long to get good
implementations of the lower level protocols as it takes to get
good implementations of the higher level ones. In particular, it
has been observed that there is still a lot of work being done at
the ISO network and transport layers. As a result,
implementations of protocols above these layers are not being
aggressively pursued. Thus, something must be done "now" to
provide a medium in which the higher level protocols can be
developed. Since TCP/IP is mature, and essentially provides
identical functionality, it is an ideal medium to support this
development.
b. Implementation of gateways at the IP and ISO IP layers are
probably not of general use in the long term. In effect, this
would require each Internet host to support both TP4 and TCP. As
such, a better strategy is to implement a graceful migration path
from TCP/IP to ISO protocols for the ARPA Internet when the ISO
protocols have matured sufficiently.
Both of these arguments indicate that gatewaying should occur at or
above the transport layer service access point. Further, the first
argument suggests that the best approach is to perform the gatewaying
exactly AT the transport service access point to maximize the number
of ISO layers which can be developed.
NOTE: This memo does not intend to act as a migration or
intercept document. It is intended ONLY to meet the needs
discussed above. However, it would not be unexpected that the
protocol described in this memo might form part of an overall
transition plan. The description of such a plan however is
COMPLETELY beyond the scope of this memo.
Finally, in general, building gateways between other layers in the
TCP/IP and ISO protocol suites is problematic, at best.
To summarize: the primary motivation for the standard described in
Cass & Rose [Page 3]
RFC 983 April 1986
ISO Transport Services on Top of the TCP
this memo is to facilitate the process of gaining experience with
higher-level ISO protocols (session, presentation, and application).
The stability and maturity of TCP/IP are ideal for providing solid
transport services independent of actual implementation.
3. The Model
The [ISO-8072] standard describes the ISO transport service
definition, henceforth called TP.
ASIDE: This memo references the ISO specifications rather than
the CCITT recommendations. The differences between these parallel
standards are quite small, and can be ignored, with respect to
this memo, without loss of generality. To provide the reader with
the relationships:
Transport service [ISO-8072] [X.214]
Transport protocol [ISO-8073] [X.224]
Session protocol [ISO-8327] [X.225]
The ISO transport service definition describes the services offered
by the TS-provider (transport service) and the interfaces used to
access those services. This memo focuses on how the ARPA
Transmission Control Protocol (TCP) [RFC-793] can be used to offer
the services and provide the interfaces.
+-------------+ +-------------+
| TS-user | | TS-user |
+-------------+ +-------------+
| |
| TSAP interface TSAP interface |
| [ISO-8072] |
| |
+------------+ ISO Transport Services on the TCP +------------+
| client |----------------------------------------| server |
+------------+ (this memo) +------------+
| |
| TCP interface TCP interface |
| [RFC-793] |
| |
For expository purposes, the following abbreviations are used:
TS-peer a process which implements the protocol
described by this memo
Cass & Rose [Page 4]
RFC 983 April 1986
ISO Transport Services on Top of the TCP
TS-user a process talking using the services of a
TS-peer
TS-provider the black-box entity implementing the protocol
described by this memo
For the purposes of this memo, which describes version 1 of the TSAP
protocol, all aspects of [ISO-8072] are supported with one exception:
Quality of Service parameters
In the spirit of CCITT, this is left "for further study". Version 2
of the TSAP protocol will most likely support the QOS parameters for
TP by mapping these onto various TCP parameters.
Since TP supports the notion of a session port (termed a TSAP ID),
but the list of reserved ISO TSAP IDs is not clearly defined at this
time, this memo takes the philosophy of isolating the TCP port space
from the TSAP ID space and uses a single TCP port. This memo
reserves TCP port 102 for this purpose. This protocol manages its
own TSAP ID space independent of the TCP. Appendix A of this memo
lists reserved TSAP IDs for version 1 of this TSAP protocol. It is
expected that future editions of the "Assigned Numbers" document
[RFC-960] will contain updates to this list. (Interested readers are
encouraged to read [ISO-8073] and try to figure out exactly what a
TSAP ID is.)
Finally, the ISO TSAP is fundamentally symmetric in behavior. There
is no underlying client/server model. Instead of a server listening
on a well-known port, when a connection is established, the
TS-provider generates an INDICATION event which, presumably the
TS-user catches and acts upon. Although this might be implemented by
having a server "listen" by hanging on the INDICATION event, from the
perspective of the ISO TSAP, all TS-users just sit around in the IDLE
state until they either generate a REQUEST or accept an INDICATION.
Cass & Rose [Page 5]
RFC 983 April 1986
ISO Transport Services on Top of the TCP
4. The Primitives
The protocol assumes that the TCP [RFC-793] offers the following
service primitives:
Events
connected - open succeeded (either ACTIVE or PASSIVE)
connect fails - ACTIVE open failed
data ready - data can be read from the connection
errored - the connection has errored and is now closed
closed - an orderly disconnection has started
Actions
listen on port - PASSIVE open on the given port
open port - ACTIVE open to the given port
read data - data is read from the connection
send data - data is sent on the connection
close - the connection is closed (pending data is sent)
The protocol offers the following service primitives, as defined in
[ISO-8072], to the TS-user:
Events
T-CONNECT.INDICATION
- a TS-user (server) is notified that connection establishment
is in progress
T-DISCONNECT.INDICATION
- a TS-user is notified that the connection is closed
T-CONNECT.CONFIRMATION
- a TS-user (client) is notified that the connection has been
established
Cass & Rose [Page 6]
RFC 983 April 1986
ISO Transport Services on Top of the TCP
T-DATA.INDICATION
- a TS-user is notified that data can be read from the
connection
T-EXPEDITED DATA.INDICATION
- a TS-user is notified that "expedited" data can be read from
the connection
Actions
T-CONNECT.RESPONSE
- a TS-user (server) indicates that it will honor the request
T-DISCONNECT.REQUEST
- a TS-user indicates that the connection is to be closed
T-CONNECT.REQUEST
- a TS-user (client) indicates that it wants to establish a
connection
T-DATA.REQUEST
- a TS-user sends data
T-EXPEDITED DATA.REQUEST
- a TS-user sends "expedited" data
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -