📄 rfc1932.txt
字号:
Cole, Shur & Villamizar Informational [Page 21]
RFC 1932 IP over ATM: A Framework Document April 1996
.--------. .--------.
: Router : : Router :
--v-v--- ---v-v--
: : : :
.--------. .--------. : : .--------. : : .--------. .--------.
: Sub-ES :---: Subnet :-/ \-: Subnet :-/ \-: Subnet :---: Sub-ES :
-------- -------- -------- -------- --------
Figure 5: The Classical IP model as a concatenation of three separate
ATM IP subnets.
In order for loops to be prevented by special configuration at the
NBMA border router, that router would need to know all paths that
could lead back to the NBMA. The same argument that special
configuration could overcome loss of path information was posed in
favor of retaining the use of the EGP protocol defined in the now
historic RFC-904 [11]. This turned out to be unmanageable, with
routing problems occurring when topology was changed elsewhere.
8. IP Over ATM Proposals
8.1 The Classical IP Model
The Classical IP Model was suggested at the Spring 1993 IETF meeting
[8] and retains the classical IP subnet architecture. This model
simply consists of cascading instances of IP subnets with IP-level
(or L3) routers at IP subnet borders. An example realization of this
model consists of a concatenation of three IP subnets. This is shown
in Figure 5. Forwarding IP packets over this Classical IP model is
straight forward using already well established routing techniques
and protocols.
SVC-based ATM IP subnets are simplified in that they:
o limit the number of hosts which must be directly connected at any
given time to those that may actually exchange traffic.
o The ATM network is capable of setting up connections between
any pair of hosts. Consistent with the standard IP routing
algorithm [2] connectivity to the "outside" world is achieved
only through a router, which may provide firewall functionality
if so desired.
o The IP subnet supports an efficient mechanism for address
resolution.
Issues addressed by the IP Over ATM Working Group, and some of the
resolutions, for this model are:
Cole, Shur & Villamizar Informational [Page 22]
RFC 1932 IP over ATM: A Framework Document April 1996
o Methods of encapsulation and multiplexing. This issue is
addressed in RFC-1483 [6], in which two methods of encapsulation
are defined, an LLC/SNAP and a per-VC multiplexing option.
o The definition of an address resolution server (defined in
RFC-1577).
o Defining the default MTU size. This issue is addressed in
RFC-1626 [1] which proposes the use of the MTU discovery
protocol (RFC-1191 [9]).
o Support for IP multicasting. In the summer of 1994, work began
on the issue of supporting IP multicasting over the SVC LATM
model. The proposal for IP multicasting is currently defined by
a set of IP over ATM WG Works in Progress, referred to collectively
as the IPMC documents. In order to support IP multicasting the
ATM subnet must either support point-to- multipoint SVCs, or
multicast servers, or both.
o Defining interim SVC parameters, such as QoS parameters and
time-out values.
o Signaling and negotiations of parameters such as MTU size
and method of encapsulation. RFC-1755 [10] describes an
implementation agreement for routers signaling the ATM network
to establish SVCs initially based upon the ATM Forum's UNI
version 3.0 specification [4], and eventually to be based
upon the ATM Forum's UNI version 3.1 and later specifications.
Topics addressed in RFC-1755 include (but are not limited to)
VC management procedures, e.g., when to time-out SVCs, QOS
parameters, service classes, explicit setup message formats for
various encapsulation methods, node (host or router) to node
negotiations, etc.
RFC-1577 is also applicable to PVC-based subnets. Full mesh PVC
connectivity is required.
For more information see RFC-1577 [8].
8.2 The ROLC NHRP Model
The Next Hop Resolution Protocol (NHRP), currently a work in progress
defined by the Routing Over Large Clouds Working Group (ROLC),
performs address resolution to accomplish direct connections across
IP subnet boundaries. NHRP can supplement RFC-1577 ARP. There has
been recent discussion of replacing RFC-1577 ARP with NHRP. NHRP can
also perform a proxy address resolution to provide the address of the
border router serving a destination off of the NBMA which is only
Cole, Shur & Villamizar Informational [Page 23]
RFC 1932 IP over ATM: A Framework Document April 1996
served by a single router on the NBMA. NHRP as currently defined
cannot be used in this way to support addresses learned from routers
for which the same destinations may be heard at other routers,
without the risk of creating persistent routing loops.
8.3 "Conventional" Model
The "Conventional Model" assumes that a router can relay IP packets
cell by cell, with the VPI/VCI identifying a flow between adjacent
routers rather than a flow between a pair of nodes. A latency
advantage can be provided if cell interleaving from multiple IP
packets is allowed. Interleaving frames within the same VCI requires
an ATM AAL such as AAL3/4 rather than AAL5. Cell forwarding is
accomplished through a higher level mapping, above the ATM VCI layer.
The conventional model is not under consideration by the IP/ATM WG.
The COLIP WG has been formed to develop protocols based on the
conventional model.
8.4 The Peer Model
The Peer Model places IP routers/gateways on an addressing peer basis
with corresponding entities in an ATM cloud (where the ATM cloud may
consist of a set of ATM networks, inter-connected via UNI or P-NNI
interfaces). ATM network entities and the attached IP hosts or
routers exchange call routing information on a peer basis by
algorithmically mapping IP addressing into the NSAP space. Within
the ATM cloud, ATM network level addressing (NSAP-style), call
routing and packet formats are used.
In the Peer Model no provision is made for selection of primary path
and use of alternate paths in the event of primary path failure in
reaching multihomed non-ATM destinations. This will limit the
topologies for which the peer model alone is applicable to only those
topologies in which non-ATM networks are singly homed, or where loss
of backup connectivity is not an issue. The Peer Model may be used
to avoid the need for an address resolution protocol and in a proxy-
ARP mode for stub networks, in conjunction with other mechanisms
suitable to handle multihomed destinations.
During the discussions of the IP over ATM working group, it was felt
that the problems with the end-to-end peer model were much harder
than any other model, and had more unresolved technical issues.
While encouraging interested individuals/companies to research this
area, it was not an initial priority of the working group to address
these issues. The ATM Forum Network Layer Multiprotocol Working
Group has reached a similar conclusion.
Cole, Shur & Villamizar Informational [Page 24]
RFC 1932 IP over ATM: A Framework Document April 1996
8.5 The PNNI and the Integrated Models
The Integrated model (proposed and under study within the
Multiprotocol group of ATM Forum) considers a single routing protocol
to be used for both IP and for ATM. A single routing information
exchange is used to distribute topological information. The routing
computation used to calculate routes for IP will take into account
the topology, including link and node characteristics, of both the IP
and ATM networks and calculates an optimal route for IP packets over
the combined topology.
The PNNI is a hierarchical link state routing protocol with multiple
link metrics providing various available QoS parameters given current
loading. Call route selection takes into account QoS requirements.
Hysteresis is built into link metric readvertisements in order to
avoid computational overload and topological hierarchy serves to
subdivide and summarize complex topologies, helping to bound
computational requirements.
Integrated Routing is a proposal to use PNNI routing as an IP routing
protocol. There are several sets of technical issues that need to be
addressed, including the interaction of multiple routing protocols,
adaptation of PNNI to broadcast media, support for NHRP, and others.
These are being investigated. However, the ATM Forum MPOA group is
not currently performing this investigation. Concerned individuals
are, with an expectation of bringing the work to the ATM Forum and
the IETF.
PNNI has provisions for carrying uninterpreted information. While
not yet defined, a compatible extension of the base PNNI could be
used to carry external routing attributes and avoid the routing loop
problems described in Section 7.
Cole, Shur & Villamizar Informational [Page 25]
RFC 1932 IP over ATM: A Framework Document April 1996
++++++++++++++++++++++++++++++++++++++++++
+ .------------. .------------. +
.---------. + .-: :-. .-: :-. +
: Host or >-+-< : Single ATM : >--< : Single ATM : >-+-----\
: Router : + : : Domain : : : : Domain : : + :
--------- + -: :- -: :- + .---^----.
+ ------------ ------------ + : Router :
+ .------------. + ---v----
.---------. + .-: :-. + :
: Host or >-+- ... ... --< : Single ATM : >-+-----/
: Router : + : : Domain : : +
--------- + ATM Cloud -: :- +
+ ------------ +
++++++++++++++++++++++++++++++++++++++++++
Note: IS within ATM cloud are ATM IS
Figure 6: The ATM transition model assuming the presence of gateways
or routers between the ATM networks and the ATM peer networks.
8.6 Transition Models
Finally, it is useful to consider transition models, lying somewhere
between the Classical IP Models and the Peer and Integrated Models.
Some possible architectures for transition models have been suggested
by Fong Liaw. Others are possible, for example Figure 6 showing a
Classical IP transition model which assumes the presence of gateways
between ATM networks and ATM Peer networks.
Some of the models described in the prior sections, most notably the
Integrated Model, anticipate the need for mixed environment with
complex routing topologies. These inherently support transition
(possibly with an indefinite transition period). Models which
provide no transition support are primarily of interest to new
deployments which make exclusive, or near exclusive use of ATM or
deployments capable of wholesale replacement of existing networks or
willing to retain only non-ATM stub networks.
For some models, most notably the Peer Model, the ability to attach
to a large non-ATM or mixed internetwork is infeasible without
routing support at a higher level, or at best may pose
interconnection topology constraints (for example: single point of
attachment and a static default route). If a particular model
requires routing support at a higher level a large deployment will
need to be subdivided to provide scalability at the higher level,
which for some models degenerates back to the Classical model.
Cole, Shur & Villamizar Informational [Page 26]
RFC 1932 IP over ATM: A Framework Document April 1996
9. Application of the Working Group's and Related Documents
The IP Over ATM Working Group has generated several Works in Progress
and RFCs. This section identifies the relationship of these and
other related documents to the various IP Over ATM Models identified
in this document. The documents and RFCs produced to date are the
following references, RFC-1483 [6], RFC-1577 [8]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -