📄 rfc2538.txt
字号:
RFC 2538 Storing Certificates in the DNS March 1999
(1) If a domain name is included in the identification in the
certificate or CRL, that should be used.
(2) If a domain name is not included but an IP address is included,
then the translation of that IP address into the appropriate
inverse domain name should be used.
(3) If neither of the above it used but a URI containing a domain
name is present, that domain name should be used.
(4) If none of the above is included but a character string name is
included, then it should be treated as described for PGP names in
3.2 below.
(5) If none of the above apply, then the distinguished name (DN)
should be mapped into a domain name as specified in RFC 2247.
Example 1: Assume that an X.509v3 certificate is issued to /CN=John
Doe/DC=Doe/DC=com/DC=xy/O=Doe Inc/C=XY/ with Subject Alternative
names of (a) string "John (the Man) Doe", (b) domain name john-
doe.com, and (c) uri <https://www.secure.john-doe.com:8080/>. Then
the storage locations recommended, in priority order, would be
(1) john-doe.com,
(2) www.secure.john-doe.com, and
(3) Doe.com.xy.
Example 2: Assume that an X.509v3 certificate is issued to /CN=James
Hacker/L=Basingstoke/O=Widget Inc/C=GB/ with Subject Alternate names
of (a) domain name widget.foo.example, (b) IPv4 address
10.251.13.201, and (c) string "James Hacker
<hacker@mail.widget.foo.example>". Then the storage locations
recommended, in priority order, would be
(1) widget.foo.example,
(2) 201.13.251.10.in-addr.arpa, and
(3) hacker.mail.widget.foo.example.
3.2 PGP CERT RR Names
PGP signed keys (certificates) use a general character string User ID
[RFC 2440]. However, it is recommended by PGP that such names include
the RFC 822 email address of the party, as in "Leslie Example
<Leslie@host.example>". If such a format is used, the CERT should be
under the standard translation of the email address into a domain
name, which would be leslie.host.example in this case. If no RFC 822
name can be extracted from the string name no specific domain name is
recommended.
4. Performance Considerations
Current Domain Name System (DNS) implementations are optimized for
small transfers, typically not more than 512 bytes including
overhead. While larger transfers will perform correctly and work is
Eastlake & Gudmundsson Standards Track [Page 6]
RFC 2538 Storing Certificates in the DNS March 1999
underway to make larger transfers more efficient, it is still
advisable at this time to make every reasonable effort to minimize
the size of certificates stored within the DNS. Steps that can be
taken may include using the fewest possible optional or extensions
fields and using short field values for variable length fields that
must be included.
5. IANA Considerations
Certificate types 0x0000 through 0x00FF and 0xFF00 through 0xFFFF can
only be assigned by an IETF standards action [RFC 2434] (and this
document assigns 0x0001 through 0x0003 and 0x00FD and 0x00FE).
Certificate types 0x0100 through 0xFEFF are assigned through IETF
Consensus [RFC 2434] based on RFC documentation of the certificate
type. The availability of private types under 0x00FD and 0x00FE
should satisfy most requirements for proprietary or private types.
6. Security Considerations
By definition, certificates contain their own authenticating
signature. Thus it is reasonable to store certificates in non-secure
DNS zones or to retrieve certificates from DNS with DNS security
checking not implemented or deferred for efficiency. The results MAY
be trusted if the certificate chain is verified back to a known
trusted key and this conforms with the user's security policy.
Alternatively, if certificates are retrieved from a secure DNS zone
with DNS security checking enabled and are verified by DNS security,
the key within the retrieved certificate MAY be trusted without
verifying the certificate chain if this conforms with the user's
security policy.
CERT RRs are not used in connection with securing the DNS security
additions so there are no security considerations related to CERT RRs
and securing the DNS itself.
Eastlake & Gudmundsson Standards Track [Page 7]
RFC 2538 Storing Certificates in the DNS March 1999
References
RFC 1034 Mockapetris, P., "Domain Names - Concepts and Facilities",
STD 13, RFC 1034, November 1987.
RFC 1035 Mockapetris, P., "Domain Names - Implementation and
Specifications", STD 13, RFC 1035, November 1987.
RFC 2119 Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
RFC 2247 Kille, S., Wahl, M., Grimstad, A., Huber, R. and S.
Sataluri, "Using Domains in LDAP/X.500 Distinguished
Names", RFC 2247, January 1998.
RFC 2396 Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
Resource Identifiers (URI): Generic Syntax", RFC 2396,
August 1998.
RFC 2440 Callas, J., Donnerhacke, L., Finney, H. and R. Thayer,
"OpenPGP Message Format", RFC 2240, November 1998.
RFC 2434 Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 2434,
October 1998.
RFC 2535 Eastlake, D., "Domain Name System (DNS) Security
Extensions", RFC 2535, March 1999.
RFC 2459 Housley, R., Ford, W., Polk, W. and D. Solo, "Internet
X.509 Public Key Infrastructure Certificate and CRL
Profile", RFC 2459, January 1999.
Eastlake & Gudmundsson Standards Track [Page 8]
RFC 2538 Storing Certificates in the DNS March 1999
Authors' Addresses
Donald E. Eastlake 3rd
IBM
65 Shindegan Hill Road
RR#1
Carmel, NY 10512 USA
Phone: +1-914-784-7913 (w)
+1-914-276-2668 (h)
Fax: +1-914-784-3833 (w-fax)
EMail: dee3@us.ibm.com
Olafur Gudmundsson
TIS Labs at Network Associates
3060 Washington Rd, Route 97
Glenwood MD 21738
Phone: +1 443-259-2389
EMail: ogud@tislabs.com
Eastlake & Gudmundsson Standards Track [Page 9]
RFC 2538 Storing Certificates in the DNS March 1999
Full Copyright Statement
Copyright (C) The Internet Society (1999). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Eastlake & Gudmundsson Standards Track [Page 10]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -