📄 rfc2491.txt
字号:
This architecture introduces no new protocols, but depends on
existing protocols (NHRP, IPv6, ND, MARS) and is therefore subject to
all the security threats inherent in these protocols. This
architecture should not be used in a domain where any of the base
protocols are considered unacceptably insecure. However, this
protocol itself does not introduce additional security threats.
While this proposal does not introduce any new security mechanisms
all current IPv6 security mechanisms will work without modification
for NBMA. This includes both authentication and encryption for both
Neighbor Discovery protocols as well as the exchange of IPv6 data
packets. The MARS protocol is modified in a manner that does not
affect or augment the security offered by RFC 2022.
Acknowledgments
Eric Nordmark confirmed the usefulness of ND Redirect messages in
private email during the March 1996 IETF. The discussions with
various ION WG members during the June and December 1996 IETF helped
solidify the architecture described here. Grenville Armitage's
original work on IPv6/NBMA occurred while employed at Bellcore.
Elements of section 5 were borrowed from Matt Crawford's memo on IPv6
over Ethernet.
Armitage, et. al. Standards Track [Page 24]
RFC 2491 IPv6 over NBMA networks January 1999
Authors' Addresses
Grenville Armitage
Bell Laboratories, Lucent Technologies
101 Crawfords Corner Road
Holmdel, NJ 07733
USA
EMail: gja@lucent.com
Peter Schulter
Bright Tiger Technologies
125 Nagog Park
Acton, MA 01720
EMail: paschulter@acm.org
Markus Jork
European Applied Research Center
Digital Equipment GmbH
CEC Karlsruhe
Vincenz-Priessnitz-Str. 1
D-76131 Karlsruhe
Germany
EMail: jork@kar.dec.com
Geraldine Harter
Digital UNIX Networking
Compaq Computer Corporation
110 Spit Brook Road
Nashua, NH 03062
EMail: harter@zk3.dec.com
Armitage, et. al. Standards Track [Page 25]
RFC 2491 IPv6 over NBMA networks January 1999
References
[1] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)
Specification", RFC 2460, December 1998.
[2] ATM Forum, "ATM User Network Interface (UNI) Specification
Version 3.1", ISBN 0-13-393828-X, Prentice Hall, Englewood
Cliffs, NJ, June 1995.
[3] Crawford, M., "A Method for the Transmission of IPv6 Packets over
Ethernet Networks", RFC 1972, August 1996.
[4] Heinanen, J., "Multiprotocol Encapsulation over ATM Adaptation
Layer 5", RFC 1483, July 1993.
[5] Armitage, G., "Support for Multicast over UNI 3.1 based ATM
Networks", RFC 2022, November 1996.
[6] Hinden, R. and S. Deering, "IP Version 6 Addressing
Architecture", RFC 2373, July 1998.
[7] Narten, T., Nordmark, E. and W. Simpson, "Neighbor Discovery for
IP Version 6 (IPv6)", RFC 2461, December 1998.
[8] Luciani, J., Katz, D., Piscitello, D. Cole B and N. Doraswamy,
"NBMA Next Hop Resolution Protocol (NHRP)", RFC 2332, April 1998.
[9] Thomson, S. and T. Narten, "IPv6 Stateless Address
Autoconfiguration", RFC 2462, December 1998.
[10] "64-Bit Global Identifier Format Tutorial",
http://standards.ieee.org/db/oui/tutorials/EUI64.html.
[11] Katsube, Y., Nagami, K. and H. Esaki, "Toshiba's Router
Architecture Extensions for ATM : Overview", RFC 2098, February
1997.
[12] P. Newman, T. Lyon, G. Minshall, "Flow Labeled IP: ATM under
IP", Proceedings of INFOCOM'96, San Francisco, March 1996,
pp.1251-1260
[13] Piscitello, D. and J. Lawrence, "The Transmission of IP
Datagrams over the SMDS Service", RFC 1209, March 1991.
[14] Plummer, D., "An Ethernet Address Resolution Protocol - or -
Converting Network Protocol Addresses to 48.bit Ethernet Address
for Transmission on Ethernet Hardware", STD 37, RFC 826,
November 1982.
Armitage, et. al. Standards Track [Page 26]
RFC 2491 IPv6 over NBMA networks January 1999
[15] McCann, J., Deering, S. and J. Mogul, "Path MTU Discovery for IP
version 6", RFC 1981, August 1996.
[16] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.
[17] Armitage, G., Schulter, P. and M. Jork, "IPv6 over ATM
Networks", RFC 2492, January 1999.
[18] C. Perkins, J. Bound, "Dynamic Host Configuration Protocol for
IPv6 (DHCPv6)", Work in Progress.
[19] Hinden, R. and S. Deering, "IP Version 6 Addressing
Architecture", RFC 2373, July 1998.
Armitage, et. al. Standards Track [Page 27]
RFC 2491 IPv6 over NBMA networks January 1999
Appendix A. IPv6 Protocol Operation Description
The IPv6 over NBMA model described in this document maintains the
complete semantics of the IPv6 protocols. No changes need to be made
to the IPv6 Network Layer. Since the concept of the security
association is not being changed for NBMA, this framework maintains
complete IPv6 security semantics and features. This allows IPv6 nodes
to choose their responses to solicitations based on security
information as is done with other datalinks, thereby maintaining the
semantics of Neighbor Discovery since it is always the solicited node
that chooses what (and even if) to reply to the solicitation. Thus,
NBMA will be transparent to the network layer except in cases where
extra services (such as QoS VCs) are offered.
The remainder of this Appendix describes how the core IPv6 protocols
will operate within the model described here.
A.1 Neighbor Discovery Operations
Before performing any sort of Neighbor discover operation, each node
must first join the all-node multicast group, and it's solicited node
multicast address (the use of this address in relation to DAD is
described in A.1.4). The IPv6 network layer will join these
multicast groups as described in 4.2.
A.1.1 Performing Address Resolution
An IPv6 host performs address resolution by sending a Neighbor
Solicitation to the solicited-node multicast address of the target
host, as described in [7]. The Neighbor Solicitation message will
contain a Source Link-Layer Address Option set to the soliciting
node's NBMA address on the LL.
When the local node's IPv6/NBMA driver is passed the Neighbor
Solicitation message from the IPv6 network layer, it follows the
steps described in section 4.4.2 Sending Multicast Data.
One or more nodes will receive the Neighbor Solicitation message.
The nodes will process the data as described in section 4.5 and pass
the de-encapsulated packets to the IPv6 network layer.
If the receiving node is the target of the Neighbor Solicitation it
will update its Neighbor cache with the soliciting node's NBMA
address, contained in the Neighbor Solicitation message's Source
Link-Layer Address Option as described in [7].
Armitage, et. al. Standards Track [Page 28]
RFC 2491 IPv6 over NBMA networks January 1999
The solicited IPv6 host will respond to the Neighbor Solicitation
with a Neighbor Advertisement message sent to the IPv6 unicast
address of the soliciting node. The Neighbor Advertisement message
will contain a Target Link-Layer Address Option set to the solicited
node's NBMA address on the LL.
The solicited node's IPv6/NBMA driver will be passed the Neighbor
Advertisement and the soliciting node's link-layer address from the
IPv6 network layer. It will then follow the steps described in
section section 4.4.1 to send the NA message to the soliciting node.
This will create a pt-pt VC between the solicited node and soliciting
node if one did not already exist.
The soliciting node will then receive the Neighbor Advertisement
message over the new PtP VC, de-encapsulate the message, and pass it
to the IPv6 Network layer for processing as described in section 4.5.
The soliciting node will then make the appropriate entries in it's
Neighbor cache, including caching the NBMA link-layer address of the
solicited node as described in [7].
At this point each system has a complete Neighbor cache entry for the
other system. They can exchange data over the pt-pt VC newly created
by the solicited node when it returned the Neighbor Advertisement, or
create a new VC.
An IPv6 host can also send an Unsolicited Neighbor Advertisemnent to
the all-nodes multicast address. When the local node IPv6/NBMA driver
is passed the Neighbor Advertisement from the IPv6 network layer, it
follows the steps described in section 4.4.2 to send the NA message
to the all-nodes multicast address. Each node will process the
incoming packet as described in section 4.5 and then pass the packet
to the IPv6 network layer where it will be processed as described in
[7].
A.1.2 Performing Router Discovery
Router Discovery is described in [7]. To support Router Discovery an
IPv6 router will join the IPv6 all-routers multicast group address.
When the IPv6/NBMA driver gets the JoinLocalGroup request from the
IPv6 Network Layer, it follows the process described in section 4.2.
IPv6 routers periodically send unsolicited Router Advertisem
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -