📄 rfc1623.txt
字号:
particular interface is accompanied by a
particular number of media collisions."
INDEX { ifIndex, dot3CollCount }
::= { dot3CollTable 1 }
Dot3CollEntry ::= SEQUENCE {
dot3CollCount INTEGER,
dot3CollFrequencies Counter
}
-- { dot3CollEntry 1 } is no longer in use
dot3CollCount OBJECT-TYPE
SYNTAX INTEGER (1..16)
Kastenholz [Page 13]
RFC 1623 Ethernet-Like MIB May 1994
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The number of per-frame media collisions for
which a particular collision histogram cell
represents the frequency on a particular
interface."
::= { dot3CollEntry 2 }
dot3CollFrequencies OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A count of individual MAC frames for which the
transmission (successful or otherwise) on a
particular interface occurs after the
frame has experienced exactly the number
of collisions in the associated
dot3CollCount object.
For example, a frame which is transmitted
on interface 77 after experiencing
exactly 4 collisions would be indicated
by incrementing only dot3CollFrequencies.77.4.
No other instance of dot3CollFrequencies would
be incremented in this example."
::= { dot3CollEntry 3 }
-- 802.3 Tests
dot3Tests OBJECT IDENTIFIER ::= { dot3 6 }
dot3Errors OBJECT IDENTIFIER ::= { dot3 7 }
-- TDR Test
-- The Time-Domain Reflectometry (TDR) test is specific
-- to ethernet-like interfaces with the exception of
-- 10BaseT and 10BaseF. The TDR value may be useful
-- in determining the approximate distance to a cable fault.
-- It is advisable to repeat this test to check for a
-- consistent resulting TDR value, to verify that there
-- is a fault.
dot3TestTdr OBJECT IDENTIFIER ::= { dot3Tests 1 }
Kastenholz [Page 14]
RFC 1623 Ethernet-Like MIB May 1994
-- A TDR test returns as its result the time interval,
-- measured in 10 MHz ticks or 100 nsec units, between
-- the start of TDR test transmission and the subsequent
-- detection of a collision or deassertion of carrier. On
-- successful completion of a TDR test, the result is
-- stored as the value of the appropriate instance of the
-- MIB object dot3TestTdrValue, and the OBJECT IDENTIFIER
-- of that instanceis stored in the corresponding instance
-- of ifExtnsTestCode (thereby indicating where the
-- result has been stored).
-- Loopback Test
-- Another test is the full-duplex loopback test.
-- This test configures the MAC chip and executes
-- an internal loopback test of memory, data paths,
-- and the MAC chip logic. This loopback test can
-- only be executed if the interface is offline.
-- Once the test has completed, the MAC chip should
-- be reinitialized for network operation, but it
-- should remain offline.
dot3TestLoopBack OBJECT IDENTIFIER ::= { dot3Tests 2 }
-- If an error occurs during a test, the object
-- ifTestResult (defined in RFC1573) will be set
-- to failed(7). The following two OBJECT
-- IDENTIFIERs may be used to provided more
-- information as values for ifTestCode.
-- couldn't initialize MAC chip for test
dot3ErrorInitError OBJECT IDENTIFIER ::= { dot3Errors 1 }
-- expected data not received (or not
-- received correctly) in loopback test
dot3ErrorLoopbackError OBJECT IDENTIFIER ::= { dot3Errors 2 }
-- RFC1573 does away with the interface chipset object.
-- The following OBJECT IDENTIFIER definitions are
-- retained for purposes of backwards compatibility
-- with pre-RFC1573 systems.
-- 802.3 Hardware Chipsets
-- The object ifExtnsChipSet is provided in RFC1229 to
-- identify the MAC hardware used to communcate on an
-- interface. The following hardware chipsets are
-- provided for 802.3:
Kastenholz [Page 15]
RFC 1623 Ethernet-Like MIB May 1994
dot3ChipSets OBJECT IDENTIFIER ::= { dot3 8 }
dot3ChipSetAMD OBJECT IDENTIFIER ::= { dot3ChipSets 1 }
dot3ChipSetAMD7990 OBJECT IDENTIFIER ::= { dot3ChipSetAMD 1 }
dot3ChipSetAMD79900 OBJECT IDENTIFIER ::= { dot3ChipSetAMD 2 }
dot3ChipSetAMD79C940 OBJECT IDENTIFIER ::= { dot3ChipSetAMD 3 }
dot3ChipSetIntel OBJECT IDENTIFIER ::= { dot3ChipSets 2 }
dot3ChipSetIntel82586 OBJECT IDENTIFIER ::= { dot3ChipSetIntel 1 }
dot3ChipSetIntel82596 OBJECT IDENTIFIER ::= { dot3ChipSetIntel 2 }
dot3ChipSetSeeq OBJECT IDENTIFIER ::= { dot3ChipSets 3 }
dot3ChipSetSeeq8003 OBJECT IDENTIFIER ::= { dot3ChipSetSeeq 1 }
dot3ChipSetNational OBJECT IDENTIFIER ::= { dot3ChipSets 4 }
dot3ChipSetNational8390 OBJECT IDENTIFIER ::=
{ dot3ChipSetNational 1 }
dot3ChipSetNationalSonic OBJECT IDENTIFIER ::=
{ dot3ChipSetNational 2 }
dot3ChipSetFujitsu OBJECT IDENTIFIER ::= { dot3ChipSets 5 }
dot3ChipSetFujitsu86950 OBJECT IDENTIFIER ::=
{ dot3ChipSetFujitsu 1 }
dot3ChipSetDigital OBJECT IDENTIFIER ::= { dot3ChipSets 6 }
dot3ChipSetDigitalDC21040 OBJECT IDENTIFIER ::=
{ dot3ChipSetDigital 1 }
-- For those chipsets not represented above, OBJECT IDENTIFIER
-- assignment is required in other documentation, e.g., assignment
-- within that part of the registration tree delegated to
-- individual enterprises (see RFC1155).
END
5. Acknowledgements
This document was produced by the Ethernet MIB Working Group.
This document is based on the Proposed Standard Ethernet MIB, RFC
1284 [14], of which Jihn Cook of Chipcom was the editor. The
Ethernet MIB Working Group gathered implementation experience of the
variables specified in RFC 1284 and used that information to develop
this revised MIB.
RFC 1284, in turn, is based on a document written by Frank Kastenholz
of Interlan entitled IEEE 802.3 Layer Management Draft M compatible
MIB for TCP/IP Networks [10]. This document has been modestly
reworked, initially by the SNMP Working Group, and then by the
Kastenholz [Page 16]
RFC 1623 Ethernet-Like MIB May 1994
Transmission Working Group, to reflect the current conventions for
defining objects for MIB interfaces. James Davin, of the MIT
Laboratory for Computer Science, and Keith McCloghrie of Hughes LAN
Systems, contributed to later drafts of this memo. Marshall Rose of
Performance Systems International, Inc. converted the document into
its current concise format. Anil Rijsinghani of DEC contributed text
that more adequately describes the TDR test. Thanks to Frank
Kastenholz of Interlan and Louis Steinberg of IBM for their
experimentation.
6. References
[1] Cerf, V., "IAB Recommendations for the Development of Internet
Network Management Standards", RFC 1052, NRI, April 1988.
[2] Cerf, V., "Report of the Second Ad Hoc Network Management Review
Group", RFC 1109, NRI, August 1989.
[3] Rose M., and K. McCloghrie, "Structure and Identification of
Management Information for TCP/IP-based internets", STD 16, RFC
1155, Performance Systems International, Hughes LAN Systems, May
1990.
[4] McCloghrie K., and M. Rose, "Management Information Base for
Network Management of TCP/IP-based internets", RFC 1156, Hughes
LAN Systems, Performance Systems International, May 1990.
[5] Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple
Network Management Protocol", STD 15, RFC 1157, SNMP Research,
Performance Systems International, Performance Systems
International, MIT Laboratory for Computer Science, May 1990.
[6] McCloghrie K., and M. Rose, Editors, "Management Information Base
for Network Management of TCP/IP-based internets", STD 17, RFC
1213, Performance Systems International, March 1991.
[7] Information processing systems - Open Systems Interconnection -
Specification of Abstract Syntax Notation One (ASN.1),
International Organization for Standardization, International
Standard 8824, December 1987.
[8] Information processing systems - Open Systems Interconnection -
Specification of Basic Encoding Rules for Abstract Notation One
(ASN.1), International Organization for Standardization,
International Standard 8825, December 1987.
[9] IEEE, "IEEE 802.3 Layer Management", November 1988.
Kastenholz [Page 17]
RFC 1623 Ethernet-Like MIB May 1994
[10] Kastenholz, F., "IEEE 802.3 Layer Management Draft compatible MIB
for TCP/IP Networks", electronic mail message to mib-
wg@nnsc.nsf.net, 9 June 1989.
[11] McCloghrie, K., Editor, "Extensions to the Generic-Interface
MIB", RFC 1229, Hughes LAN Systems, Inc., May 1991.
[12] IEEE, "Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) Access Method and Physical Layer Specifications",
ANSI/IEEE Std 802.3-1985.
[13] Rose, M., and K. McCloghrie, Editors, "Concise MIB Definitions",
RFC 1212, Performance Systems International, Hughes LAN Systems,
March 1991.
[14] Cook, J., Editor, "Definitions of Managed Objects for Ethernet-
Like Interface Types", RFC 1284, Chipcom Corporation, December
1991.
[15] Kastenholz, F., "Definitions of Managed Objects for the Etheret-
like Interface Types", RFC 1398, FTP Software, Inc., January
1993.
[16] Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Structure
of Management Information for version 2 of the Simple Network
Management Protocol (SNMPv2)", RFC 1442, SNMP Research, Inc.,
Hughes LAN Systems, Dover Beach Consulting, Inc., Carnegie Mellon
University, April 1993.
[17] Galvin, J., and K. McCloghrie, "Administrative Model for version
2 of the Simple Network Management Protocol (SNMPv2)", RFC 1445,
Trusted Information Systems, Hughes LAN Systems, April 1993.
[18] Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Protocol
Operations for version 2 of the Simple Network Management
Protocol (SNMPv2)", RFC 1448, SNMP Research, Inc., Hughes LAN
Systems, Dover Beach Consulting, Inc., Carnegie Mellon
University, April 1993.
[19] McCloghrie, K., and F. Kastenholz, "Evolution of the Interfaces
Group of MIB-II", RFC 1573, Hughes LAN Systems, FTP Software,
January 1994.
Kastenholz [Page 18]
RFC 1623 Ethernet-Like MIB May 1994
7. Security Considerations
Security issues are not discussed in this memo.
8. Author's Address
Frank Kastenholz
FTP Software, Inc.
2 High Street
North Andover, Mass, USA 01845
Phone: 508-685-4000
EMail: kasten@ftp.com
Kastenholz [Page 19]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -