⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rfc1389.txt

📁 RFC 的详细文档!
💻 TXT
📖 第 1 页 / 共 2 页
字号:






Network Working Group                                         G. Malkin
Request for Comments: 1389                               Xylogics, Inc.
                                                               F. Baker
                                       Advanced Computer Communications
                                                           January 1993


                      RIP Version 2 MIB Extension

Status of this Memo

   This RFC specifies an IAB standards track protocol for the Internet
   community, and requests discussion and suggestions for improvements.
   Please refer to the current edition of the "IAB Official Protocol
   Standards" for the standardization state and status of this protocol.
   Distribution of this memo is unlimited.

Abstract

   This memo defines a portion of the Management Information Base (MIB)
   for use with network management protocols in TCP/IP-based internets.
   In particular, it defines objects for managing RIP Version 2.

Table of Contents

   1. The Network Management Framework ......................    1
   2. Objects ...............................................    2
   2.1 Format of Definitions ................................    2
   3. Overview ..............................................    3
   3.1 Textual Conventions ..................................    3
   3.2 Structure of MIB .....................................    3
   4. Definitions ...........................................    3
   4.1 Global Counters ......................................    4
   4.2 RIP Interface Tables .................................    4
   4.3 Peer Table ...........................................   10
   5. Acknowledgements ......................................   12
   6. References ............................................   12
   7. Security Considerations ...............................   13
   8. Authors' Addresses ....................................   13

1. The Network Management Framework

   The Internet-standard Network Management Framework consists of three
   components.  They are:

      STD 16/RFC 1155 which defines the SMI, the mechanisms used for
      describing and naming objects for the purpose of management.  STD
      16/RFC 1212 defines a more concise description mechanism, which is



Malkin & Baker                                                  [Page 1]

RFC 1389                  RIP-2 MIB Extension               January 1993


      wholly consistent with the SMI.

      RFC 1156 which defines MIB-I, the core set of managed objects for
      the Internet suite of protocols.  STD 17/RFC 1213 defines MIB-II,
      an evolution of MIB-I based on implementation experience and new
      operational requirements.

      STD 15/RFC 1157 which defines the SNMP, the protocol used for
      network access to managed objects.

   The Framework permits new objects to be defined for the purpose of
   experimentation and evaluation.

2. Objects

   Managed objects are accessed via a virtual information store, termed
   the Management Information Base or MIB.  Objects in the MIB are
   defined using the subset of Abstract Syntax Notation One (ASN.1) [7]
   defined in the SMI.  In particular, each object has a name, a syntax,
   and an encoding.  The name is an object identifier, an
   administratively assigned name, which specifies an object type.  The
   object type together with an object instance serves to uniquely
   identify a specific instantiation of the object.  For human
   convenience, we often use a textual string, termed the OBJECT
   DESCRIPTOR, to also refer to the object type.

   The syntax of an object type defines the abstract data structure
   corresponding to that object type.  The ASN.1 language is used for
   this purpose.  However, the SMI [3] purposely restricts the ASN.1
   constructs which may be used.  These restrictions are explicitly made
   for simplicity.

   The encoding of an object type is simply how that object type is
   represented using the object type's syntax.  Implicitly tied to the
   notion of an object type's syntax and encoding is how the object type
   is represented when being transmitted on the network.

   The SMI specifies the use of the basic encoding rules of ASN.1 [8],
   subject to the additional requirements imposed by the SNMP.

2.1 Format of Definitions

   Section 4 contains contains the specification of all object types
   contained in this MIB module.  The object types are defined using the
   conventions defined in the SMI, as amended by the extensions
   specified in [9].





Malkin & Baker                                                  [Page 2]

RFC 1389                  RIP-2 MIB Extension               January 1993


3. Overview

3.1 Textual Conventions

   Several new data types are introduced as a textual convention in this
   MIB document.  These textual conventions enhance the readability of
   the specification and can ease comparison with other specifications
   if appropriate.  It should be noted that the introduction of the
   these textual conventions has no effect on either the syntax nor the
   semantics of any managed objects.  The use of these is merely an
   artifact of the explanatory method used.  Objects defined in terms of
   one of these methods are always encoded by means of the rules that
   define the primitive type.  Hence, no changes to the SMI or the SNMP
   are necessary to accommodate these textual conventions which are
   adopted merely for the convenience of readers and writers in pursuit
   of the elusive goal of clear, concise, and unambiguous MIB documents.

   The new data types are: Validation (the standard "set to invalid
   causes deletion" type), and RouteTag.   The RouteTag type represents
   the contents of the Route Tag field in the packet header or route
   entry.

3.2 Structure of MIB

   The RIP-2 MIB contains global counters useful for detecting the
   deleterious effects of RIP incompatibilities, an "interfaces" table
   which contains interface-specific statistics and configuration
   information, and an optional "neighbor" table containing information
   that may be helpful in debugging neighbor relationships.  Like the
   protocol itself, this MIB takes great care to preserve compatibility
   with RIP-1 systems, and controls for monitoring and controlling
   system interactions.

4. Definitions

   RFC1389-MIB DEFINITIONS ::= BEGIN

   IMPORTS
           Counter, TimeTicks, IpAddress
                   FROM RFC1155-SMI
           mib-2
                   FROM RFC1213-MIB
           OBJECT-TYPE
                   FROM RFC-1212;

   --  RIP-2 Management Information Base

     rip2 OBJECT IDENTIFIER ::= { mib-2 23 }



Malkin & Baker                                                  [Page 3]

RFC 1389                  RIP-2 MIB Extension               January 1993


   -- the RouteTag type represents the contents of the
   -- Route Tag field in the packet header or route entry.

   RouteTag ::= OCTET STRING (SIZE (2))

   -- the Validation type is used for the variable that deletes
   -- an entry from a table, and ALWAYS takes at least these values:

   Validation ::= INTEGER { valid (1), invalid (2) }


   --      The RIP-2 Globals Group.
   --      Implementation of this group is mandatory for systems that
   --           implement RIP-2.

   -- These counters are intended to facilitate debugging quickly
   -- changing routes or failing neighbors

   rip2GlobalGroup OBJECT IDENTIFIER ::= { rip2 1 }


       rip2GlobalRouteChanges OBJECT-TYPE
           SYNTAX   Counter
           ACCESS   read-only
           STATUS   mandatory
           DESCRIPTION
              "The number of changes made to the IP Route Da-
              tabase by RIP."
          ::= { rip2GlobalGroup 1 }


       rip2GlobalQueries OBJECT-TYPE
           SYNTAX   Counter
           ACCESS   read-only
           STATUS   mandatory
           DESCRIPTION
              "The number of responses sent  to  RIP  queries
              from other systems."
          ::= { rip2GlobalGroup 2 }


   --  RIP Interfaces Groups
   --  Implementation of these Groups is mandatory for systems that
   --       implement RIP-2.

   -- Since RIP versions 1 and 2 do not deal with addressless links,
   -- it is assumed that RIP "interfaces" are subnets within a
   -- routing domain.



Malkin & Baker                                                  [Page 4]

RFC 1389                  RIP-2 MIB Extension               January 1993


   -- The RIP Interface Status Table.

       rip2IfStatTable OBJECT-TYPE
           SYNTAX   SEQUENCE OF Rip2IfStatEntry
           ACCESS   not-accessible
           STATUS   mandatory
           DESCRIPTION
              "A  list  of  subnets  which  require  separate
              status monitoring in RIP."
          ::= { rip2 2 }

      rip2IfStatEntry OBJECT-TYPE
          SYNTAX   Rip2IfStatEntry
          ACCESS   not-accessible
          STATUS   mandatory
          DESCRIPTION
             "A Single Routing Domain in a single Subnet."
         INDEX { rip2IfStatAddress }
         ::= { rip2IfStatTable 1 }


       Rip2IfStatEntry ::=
           SEQUENCE {
               rip2IfStatAddress
                   IpAddress,
               rip2IfStatRcvBadPackets
                   Counter,
               rip2IfStatRcvBadRoutes
                   Counter,
               rip2IfStatSentUpdates
                   Counter,
               rip2IfStatStatus
                   Validation
       }

       rip2IfStatAddress OBJECT-TYPE
           SYNTAX   IpAddress
           ACCESS   read-only
           STATUS   mandatory
           DESCRIPTION
              "The IP Address of this system on the indicated
              subnet."
          ::= { rip2IfStatEntry 1 }


       rip2IfStatRcvBadPackets OBJECT-TYPE
           SYNTAX   Counter
           ACCESS   read-only



Malkin & Baker                                                  [Page 5]

RFC 1389                  RIP-2 MIB Extension               January 1993


           STATUS   mandatory
           DESCRIPTION
              "The number of RIP response packets received by
              the  RIP  process  which were subsequently dis-
              carded for any reason (e.g. a version 0 packet,
              or an unknown command type)."
          ::= { rip2IfStatEntry 2 }


       rip2IfStatRcvBadRoutes OBJECT-TYPE
           SYNTAX   Counter
           ACCESS   read-only
           STATUS   mandatory
           DESCRIPTION
              "The number of routes, in  valid  RIP  packets,
              which were ignored for any reason (e.g. unknown
              address family, or invalid metric)."
          ::= { rip2IfStatEntry 3 }


       rip2IfStatSentUpdates OBJECT-TYPE
           SYNTAX   Counter
           ACCESS   read-only
           STATUS   mandatory
           DESCRIPTION
              "The number of triggered RIP  updates  actually
              sent  on  this interface.  This explicitly does
              NOT include full updates  sent  containing  new
              information."
          ::= { rip2IfStatEntry 4 }

       rip2IfStatStatus OBJECT-TYPE
           SYNTAX   Validation
           ACCESS   read-write
           STATUS   mandatory
           DESCRIPTION
              "Writing invalid has  the  effect  of  deleting
              this interface."
          DEFVAL { valid }
          ::= { rip2IfStatEntry 5 }


   -- The RIP Interface Configuration Table.


       rip2IfConfTable OBJECT-TYPE
           SYNTAX   SEQUENCE OF Rip2IfConfEntry
           ACCESS   not-accessible



Malkin & Baker                                                  [Page 6]

RFC 1389                  RIP-2 MIB Extension               January 1993


           STATUS   mandatory
           DESCRIPTION
              "A list of subnets which require separate  con-
              figuration in RIP."
          ::= { rip2 3 }

      rip2IfConfEntry OBJECT-TYPE
          SYNTAX   Rip2IfConfEntry
          ACCESS   not-accessible
          STATUS   mandatory
          DESCRIPTION
             "A Single Routing Domain in a single Subnet."
         INDEX { rip2IfConfAddress }
         ::= { rip2IfConfTable 1 }


       Rip2IfConfEntry ::=
           SEQUENCE {
               rip2IfConfAddress
                   IpAddress,
               rip2IfConfDomain
                   RouteTag,
               rip2IfConfAuthType
                   INTEGER,

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -