📄 rfc1180.txt
字号:
/ \
data data
comes in goes out
here here
Figure 5. Example of IP Forwarding a IP Packet
The process of sending an IP packet out onto another network is
called "forwarding" an IP packet. A computer that has been dedicated
to the task of forwarding IP packets is called an "IP-router".
As you can see from the figure, the forwarded IP packet never touches
the TCP and UDP modules on the IP-router. Some IP-router
implementations do not have a TCP or UDP module.
2.5 IP Creates a Single Logical Network
The IP module is central to the success of internet technology. Each
module or driver adds its header to the message as the message passes
Socolofsky & Kale [Page 6]
RFC 1180 A TCP/IP Tutorial January 1991
down through the protocol stack. Each module or driver strips the
corresponding header from the message as the message climbs the
protocol stack up towards the application. The IP header contains
the IP address, which builds a single logical network from multiple
physical networks. This interconnection of physical networks is the
source of the name: internet. A set of interconnected physical
networks that limit the range of an IP packet is called an
"internet".
2.6 Physical Network Independence
IP hides the underlying network hardware from the network
applications. If you invent a new physical network, you can put it
into service by implementing a new driver that connects to the
internet underneath IP. Thus, the network applications remain intact
and are not vulnerable to changes in hardware technology.
2.7 Interoperability
If two computers on an internet can communicate, they are said to
"interoperate"; if an implementation of internet technology is good,
it is said to have "interoperability". Users of general-purpose
computers benefit from the installation of an internet because of the
interoperability in computers on the market. Generally, when you buy
a computer, it will interoperate. If the computer does not have
interoperability, and interoperability can not be added, it occupies
a rare and special niche in the market.
2.8 After the Overview
With the background set, we will answer the following questions:
When sending out an IP packet, how is the destination Ethernet
address determined?
How does IP know which of multiple lower network interfaces to use
when sending out an IP packet?
How does a client on one computer reach the server on another?
Why do both TCP and UDP exist, instead of just one or the other?
What network applications are available?
These will be explained, in turn, after an Ethernet refresher.
Socolofsky & Kale [Page 7]
RFC 1180 A TCP/IP Tutorial January 1991
3. Ethernet
This section is a short review of Ethernet technology.
An Ethernet frame contains the destination address, source address,
type field, and data.
An Ethernet address is 6 bytes. Every device has its own Ethernet
address and listens for Ethernet frames with that destination
address. All devices also listen for Ethernet frames with a wild-
card destination address of "FF-FF-FF-FF-FF-FF" (in hexadecimal),
called a "broadcast" address.
Ethernet uses CSMA/CD (Carrier Sense and Multiple Access with
Collision Detection). CSMA/CD means that all devices communicate on
a single medium, that only one can transmit at a time, and that they
can all receive simultaneously. If 2 devices try to transmit at the
same instant, the transmit collision is detected, and both devices
wait a random (but short) period before trying to transmit again.
3.1 A Human Analogy
A good analogy of Ethernet technology is a group of people talking in
a small, completely dark room. In this analogy, the physical network
medium is sound waves on air in the room instead of electrical
signals on a coaxial cable.
Each person can hear the words when another is talking (Carrier
Sense). Everyone in the room has equal capability to talk (Multiple
Access), but none of them give lengthy speeches because they are
polite. If a person is impolite, he is asked to leave the room
(i.e., thrown off the net).
No one talks while another is speaking. But if two people start
speaking at the same instant, each of them know this because each
hears something they haven't said (Collision Detection). When these
two people notice this condition, they wait for a moment, then one
begins talking. The other hears the talking and waits for the first
to finish before beginning his own speech.
Each person has an unique name (unique Ethernet address) to avoid
confusion. Every time one of them talks, he prefaces the message
with the name of the person he is talking to and with his own name
(Ethernet destination and source address, respectively), i.e., "Hello
Jane, this is Jack, ..blah blah blah...". If the sender wants to
talk to everyone he might say "everyone" (broadcast address), i.e.,
"Hello Everyone, this is Jack, ..blah blah blah...".
Socolofsky & Kale [Page 8]
RFC 1180 A TCP/IP Tutorial January 1991
4. ARP
When sending out an IP packet, how is the destination Ethernet
address determined?
ARP (Address Resolution Protocol) is used to translate IP addresses
to Ethernet addresses. The translation is done only for outgoing IP
packets, because this is when the IP header and the Ethernet header
are created.
4.1 ARP Table for Address Translation
The translation is performed with a table look-up. The table, called
the ARP table, is stored in memory and contains a row for each
computer. There is a column for IP address and a column for Ethernet
address. When translating an IP address to an Ethernet address, the
table is searched for a matching IP address. The following is a
simplified ARP table:
------------------------------------
|IP address Ethernet address |
------------------------------------
|223.1.2.1 08-00-39-00-2F-C3|
|223.1.2.3 08-00-5A-21-A7-22|
|223.1.2.4 08-00-10-99-AC-54|
------------------------------------
TABLE 1. Example ARP Table
The human convention when writing out the 4-byte IP address is each
byte in decimal and separating bytes with a period. When writing out
the 6-byte Ethernet address, the conventions are each byte in
hexadecimal and separating bytes with either a minus sign or a colon.
The ARP table is necessary because the IP address and Ethernet
address are selected independently; you can not use an algorithm to
translate IP address to Ethernet address. The IP address is selected
by the network manager based on the location of the computer on the
internet. When the computer is moved to a different part of an
internet, its IP address must be changed. The Ethernet address is
selected by the manufacturer based on the Ethernet address space
licensed by the manufacturer. When the Ethernet hardware interface
board changes, the Ethernet address changes.
4.2 Typical Translation Scenario
During normal operation a network application, such as TELNET, sends
an application message to TCP, then TCP sends the corresponding TCP
message to the IP module. The destination IP address is known by the
Socolofsky & Kale [Page 9]
RFC 1180 A TCP/IP Tutorial January 1991
application, the TCP module, and the IP module. At this point the IP
packet has been constructed and is ready to be given to the Ethernet
driver, but first the destination Ethernet address must be
determined.
The ARP table is used to look-up the destination Ethernet address.
4.3 ARP Request/Response Pair
But how does the ARP table get filled in the first place? The answer
is that it is filled automatically by ARP on an "as-needed" basis.
Two things happen when the ARP table can not be used to translate an
address:
1. An ARP request packet with a broadcast Ethernet address is sent
out on the network to every computer.
2. The outgoing IP packet is queued.
Every computer's Ethernet interface receives the broadcast Ethernet
frame. Each Ethernet driver examines the Type field in the Ethernet
frame and passes the ARP packet to the ARP module. The ARP request
packet says "If your IP address matches this target IP address, then
please tell me your Ethernet address". An ARP request packet looks
something like this:
---------------------------------------
|Sender IP Address 223.1.2.1 |
|Sender Enet Address 08-00-39-00-2F-C3|
---------------------------------------
|Target IP Address 223.1.2.2 |
|Target Enet Address <blank> |
---------------------------------------
TABLE 2. Example ARP Request
Each ARP module examines the IP address and if the Target IP address
matches its own IP address, it sends a response directly to the
source Ethernet address. The ARP response packet says "Yes, that
target IP address is mine, let me give you my Ethernet address". An
ARP response packet has the sender/target field contents swapped as
compared to the request. It looks something like this:
Socolofsky & Kale [Page 10]
RFC 1180 A TCP/IP Tutorial January 1991
---------------------------------------
|Sender IP Address 223.1.2.2 |
|Sender Enet Address 08-00-28-00-38-A9|
---------------------------------------
|Target IP Address 223.1.2.1 |
|Target Enet Address 08-00-39-00-2F-C3|
---------------------------------------
TABLE 3. Example ARP Response
The response is received by the original sender computer. The
Ethernet driver looks at the Type field in the Ethernet frame then
passes the ARP packet to the ARP module. The ARP module examines the
ARP packet and adds the sender's IP and Ethernet addresses to its ARP
table.
The updated table now looks like this:
----------------------------------
|IP address Ethernet address |
----------------------------------
|223.1.2.1 08-00-39-00-2F-C3|
|223.1.2.2 08-00-28-00-38-A9|
|223.1.2.3 08-00-5A-21-A7-22|
|223.1.2.4 08-00-10-99-AC-54|
----------------------------------
TABLE 4. ARP Table after Response
4.4 Scenario Continued
The new translation has now been installed automatically in the
table, just milli-seconds after it was needed. As you remember from
step 2 above, the outgoing IP packet was queued. Next, the IP
address to Ethernet address translation is performed by look-up in
the ARP table then the Ethernet frame is transmitted on the Ethernet.
Therefore, with the new steps 3, 4, and 5, the scenario for the
sender computer is:
1. An ARP request packet with a broadcast Ethernet address is sent
out on the network to every computer.
2. The outgoing IP packet is queued.
3. The ARP response arrives with the IP-to-Ethernet address
translation for the ARP table.
Socolofsky & Kale [Page 11]
RFC 1180 A TCP/IP Tutorial January 1991
4. For the queued IP packet, the ARP table is used to translate the
IP address to the Ethernet address.
5. The Ethernet frame is transmitted on the Ethernet.
In summary, when the translation is missing from the ARP table, one
IP packet is queued. The translation data is quickly filled in with
ARP request/response and the queued IP packet is transmitted.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -