📄 rfc3175.txt
字号:
aggregate reservations.
2.7. Handling of Aggregate Resv Message by Interior Routers
The aggregate Resv message is handled in essentially the same way as
defined in [RSVP]. The Session object contains the address of the
deaggregating router (or the group address for the session in the
case of multicast) and the DSCP that has been chosen for the session.
The Filterspec object identifies the aggregating router. These
routers perform admission control and resource allocation as usual
and send the aggregate Resv on towards the aggregator.
2.8. Handling of E2E Resv Message by Aggregating Router
The receipt of the E2E Resv message with a DCLASS Object is the final
confirmation to the aggregating router of the mapping of the E2E
reservation onto an Aggregate Reservation. Under normal
circumstances, this is the only way it will be informed of this
association. It should now forward the E2E Resv to its previous hop,
following normal RSVP processing rules [RSVP].
2.9. Removal of E2E Reservation
E2E reservations are removed in the usual way via PathTear, ResvTear,
timeout, or as the result of an error condition. When they are
removed, their FLOWSPEC information must also be removed from the
allocated portion of the aggregate reservation. This same bandwidth
may be re-used for other traffic in the near future. When E2E Path
messages are removed, their SENDER_TSPEC information must also be
removed from the aggregate Path.
2.10. Removal of Aggregate Reservation
Should an aggregate reservation go away (presumably due to a
configuration change, route change, or policy event), the E2E
reservations it supports are no longer active. They must be treated
accordingly.
2.11. Handling of Data On Reserved E2E Flow by Aggregating Router
Prior to establishment that a given E2E flow is part of a given
aggregate, the flow's data should be treated as traffic without a
reservation by whatever policies prevail for such. Generally, this
will mean being given the same forwarding behavior as best effort
traffic. However, upon establishing that the flow belongs to a given
aggregate, the aggregating router is responsible for marking any
Baker, et al. Standards Track [Page 20]
RFC 3175 RSVP Reservation Aggregation September 2001
related traffic with the correct DSCP and forwarding it in the manner
appropriate to traffic on that reservation. This may imply
forwarding it to a given IP next hop, or piping it down a given link
layer circuit, tunnel, or MPLS label switched path.
The aggregator is responsible for performing per-reservation policing
on the E2E flows that it is aggregating. The aggregator performs
metering of traffic belonging to each reservation to assess
compliance to the token bucket for the corresponding E2E reservation.
Packets which are assessed in compliance are forwarded as mentioned
above. Packets which are assessed out of compliance must be either
dropped, reshaped or marked to a different DSCP. The detailed
policing behavior is an aspect of the service mapping described in
[RFC2998].
2.12. Procedures for Multicast Sessions
Because of the difficulties of aggregating multicast sessions
described above, we focus on the aggregation of scheduling and
classification state in the multicast case. The main difference
between the multicast and unicast cases is that rather than sending
an aggregate Path message to the unicast address of a single
deaggregating router, in the multicast case we send the "aggregate"
Path message to the same group address as the E2E session. This
ensures that the aggregate Path message follows the same route as the
E2E Path. This difference between unicast and multicast is reflected
in the Session objects defined below. A consequence of this approach
is that we continue to have reservation state per multicast session
inside the aggregation region.
A further challenge arises in multicast sessions with heterogeneous
receivers. Consider an interior router which must forward packets
for a multicast session on two interfaces, but has only received a
reservation request on one of those interfaces. It receives packets
marked with the DSCP chosen for the aggregate reservation. When
sending them out the interface which has no installed reservation, it
has the following options:
a) remark those packets to best effort before sending them out the
interface;
b) send the packets out the interface with the DSCP chosen for the
aggregate reservation.
The first approach suffers from the drawback that it requires nMF
classification at an interior router in order to recognize the flows
whose packets must be demoted. The second approach requires over-
reservation of resources on the interface on which no reservation was
Baker, et al. Standards Track [Page 21]
RFC 3175 RSVP Reservation Aggregation September 2001
received. In the absence of such over-reservation, the packets sent
with the "wrong" DSCP would be able to degrade the service
experienced by packets using that DSCP legitimately.
To make MF classification acceptable in an interior router, it may be
possible to treat the case of heterogeneous flows as an exception.
That is, an interior router only needs to be able to recognize those
individual microflows that have heterogeneous resource needs on the
outbound interfaces of this router.
3. Protocol Elements
3.1. IP Protocol RSVP-E2E-IGNORE
This specification requires the assignment of a protocol type RSVP-
E2E-IGNORE, whose number is at this point 134. This is used only on
E2E messages which require a router alert (Path, PathTear, and
ResvConf), and signifies that the message must be treated one way
when destined to an interior interface, and another way when destined
to an exterior interface. The protocol type is swapped by the
Aggregator from RSVP to RSVP-E2E-IGNORE in E2E Path, PathTear, and
ResvConf messages when they enter the Aggregation Region. The
protocol type is swapped back by the Deaggregator from RSVP-E2E-
IGNORE to RSVP in such E2E messages when they exit the Aggregation
Region.
3.2. Path Error Code
A PathErr code NEW-AGGREGATE-NEEDED is required. This value does not
signify that a fatal error has occurred, but that an action is
required of the aggregating router to avoid an error condition in the
near future.
3.3. SESSION Object
The SESSION object contains two values: the IP Address of the
aggregate session destination, and the DSCP that it will use on the
E2E data the reservation contains. For unicast sessions, the session
destination address is the address of the deaggregating router. For
multicast sessions, the session destination is the multicast address
of the E2E session (or sessions) being aggregated. The inclusion of
the DSCP in the session allows for multiple sessions toward the same
address to be distinguished by their DSCP and queued separately. It
also provides the means for aggregating scheduling and classification
state. In the case where a session uses a pair of PHBs (e.g., AF11
and AF12), the DSCP used should represent the numerically smallest
PHB (e.g., AF11). This follows the same naming convention described
in [BRIM].
Baker, et al. Standards Track [Page 22]
RFC 3175 RSVP Reservation Aggregation September 2001
Session types are defined for IPv4 and IPv6 addresses.
o IP4 SESSION object: Class = SESSION,
C-Type = RSVP-AGGREGATE-IP4
+-------------+-------------+-------------+-------------+
| IPv4 Session Address (4 bytes) |
+-------------+-------------+-------------+-------------+
| /////////// | Flags | ///////// | DSCP |
+-------------+-------------+-------------+-------------+
o IP6 SESSION object: Class = SESSION,
C-Type = RSVP-AGGREGATE-IP6
+-------------+-------------+-------------+-------------+
| |
+ +
| |
+ IPv6 Session Address (16 bytes) +
| |
+ +
| |
+-------------+-------------+-------------+-------------+
| /////////// | Flags | ///////// | DSCP |
+-------------+-------------+-------------+-------------+
3.4. SENDER_TEMPLATE Object
The SENDER_TEMPLATE object identifies the aggregating router for the
aggregate reservation.
o IP4 SENDER_TEMPLATE object: Class = SENDER_TEMPLATE,
C-Type = RSVP-AGGREGATE-IP4
+-------------+-------------+-------------+-------------+
| IPv4 Aggregator Address (4 bytes) |
+-------------+-------------+-------------+-------------+
Baker, et al. Standards Track [Page 23]
RFC 3175 RSVP Reservation Aggregation September 2001
o IP6 SENDER_TEMPLATE object: Class = SENDER_TEMPLATE,
C-Type = RSVP-AGGREGATE-IP6
+-------------+-------------+-------------+-------------+
| |
+ +
| |
+ IPv6 Aggregator Address (16 bytes) +
| |
+ +
| |
+-------------+-------------+-------------+-------------+
3.5. FILTER_SPEC Object
The FILTER_SPEC object identifies the aggregating router for the
aggregate reservation, and is syntactically identical to the
SENDER_TEMPLATE object.
4. Policies and Algorithms For Predictive Management Of Blocks Of
Bandwidth
The exact policies used in determining how much bandwidth should be
allocated to an aggregate reservation at any given time are beyond
the scope of this document, and may be proprietary to the service
provider in question. However, here we explore some of the issues
and suggest approaches.
In short, the ideal condition is that the aggregate reservation
always has enough resources to allocate to any E2E reservation that
requires its support, and never takes too much. Simply stated, but
more difficult to achieve. Factors that come into account include
significant times in the diurnal cycle: one may find that a large
number of people start placing calls at 8:00 AM, even though the hour
from 7:00 to 8:00 is dead calm. They also include recent history: if
more people have been placing calls recently than have been
finishing them, a prediction of the necessary bandwidth a few moments
hence may call for more bandwidth than is currently allocated.
Likewise, at the end of a busy period, we may find that the trend
calls for declining reservation amounts.
We recommend a policy something along this line. At any given time,
one should expect th
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -