📄 rfc2613.txt
字号:
The SMON standard presents a standard MIB interface which allows for
the control of this function.
Note that this function can apply to devices that have no other SMON
or RMON functionality than copy port. The agent of such a device
would support only the portCopyCaps and the portCopyConfig MIB
groups, out of the whole SMON MIB. Switch vendors are encouraged to
implement this subset of the SMON MIB, as it would allow for standard
port copy configuration from the same NMS application that does RMON
or SMON.
Port copy may cause congestion problems on the SMON device. This
situation is more likely occur when copying from a port of higher
speed to a port of lower speed or copy from multiple port to a single
port.
Particular implementations MAY chose to build protection mechanisms
that would prevent creation of new port copy links when the capacity
of the destination port is exceeded. The MIB allows for
implementations to (if supported) instrument a destination drop count
on port copy to provide NMS applications a sense of the quality of
data presented at the destination port.
2.3.3 VLAN Monitoring
VLAN monitoring can be accomplished by using a VLAN-based dataSource
and/or by configuring smonVlanIdStats and/or smonPrioStats
collections. These functions allow VLAN-ID or user priority
distributions per dataSource. VLAN monitoring provides a high-level
view of total VLAN usages and relative non-unicast traffic usage as
well as a profile of VLAN priority as defined in the 3-bit
user_priority field.
NOTE: priority statistics reflect what was parsed from the packet,
not what priority, if any, was necessarily granted by the switch.
Waterman, et al. Standards Track [Page 7]
RFC 2613 SMON MIB June 1999
2.4 Relationship to Other MIBs
2.4.1 The RMON and RMON 2 MIBs
The Remote Monitoring MIB (RMON) [17] provides several management
functions that MAY be directly or indirectly applicable to switched
networks.
The port copy mechanisms defined by the SMON MIB allow for the
destination ports to become a data source for any RMON statistics.
However, an NMS application SHOULD check whether it is in the device
capability (portCopyCap) to filter errors from a source to a
destination port and whether this capability is enabled, in order to
provide a correct interpretation of the copied port traffic.
RMON host and matrix group statistics entries MAY be aggregated by
use of the extended dataSource capability defined in SMON. RMON 2
groups are similarly extended through the use of SMON's dataSource
definition.
RMON also defines a simple thresholding monitoring mechanism, event-
logging and event-notification for any MIB instance; SMON utilizes
the alarms and events groups from RMON without modification. These
groups SHOULD be implemented on SMON devices if a simple thresholding
mechanism is desired.
The RMON 2 usrHistory group (user-defined history collection) SHOULD
be implemented by an SMON device if a history collection mechanism is
desired for smonStats entries.
2.4.2 The Interfaces Group MIB
The SMON MIB utilizes the propVirtual(53) ifType defined in the
Interfaces Group MIB [22] to provide SMON and RMON with new
dataSources such as VLANs and internal monitoring points. NMS
applications SHOULD consult the SMON dataSource capabilities group
(dataSourceCap) for a description of these virtual interfaces.
2.4.3 The Entity MIB
The SMON MIB does not mandate Entity MIB [18] support, but allows for
physical entities, as defined by this MIB to be defined as SMON data
sources. For such cases, the support for the entPhysicalTable is
required.
Waterman, et al. Standards Track [Page 8]
RFC 2613 SMON MIB June 1999
2.4.4 The Bridge MIB
One of the important indicators for measuring the effectiveness of a
switching device is the ratio between the number of forwarded frames
and the number of dropped frames at the switch port.
It is out of the scope of this MIB to provide instrumentation
information relative to switching devices. However, such indication
may be part of other MIB modules.
For instance the Bridge MIB [23] provides such MIB objects, for the
802.1 bridges (dot1dTpPortInFrames, dot1dTpPortInDiscards) and
switches managed according to the 802.1 bridge model MAY provide this
information.
2.5 Relationship with IEEE 802.1 Standards
The SMON MIB provides simple statistics per VLAN and priority levels.
Those two categories of statistics are important to managers of
switched networks. Interoperability for those features is ensured by
the use of the IEEE 802.1 p/Q standards ([19], [20]) defined by the
IEEE 802.1 WG. Interoperability from the SMON MIB point of view is
ensured by referencing the IEEE definition of VLANs and priority
levels for the SMON statistics.
3. SMON Groups
3.1 SMON ProbeCapabilities
The SMON probeCapabilities BITS object covers the following four
capabilities.
- smonVlanStats(0)
The probe supports the smonVlanStats object group.
- smonPrioStats(1)
The probe supports the smonPrioStats object group.
- dataSource(2)
The probe supports the dataSourceCaps object group.
- portCopy(4)
The probe supports the portCopyConfig object group.
Waterman, et al. Standards Track [Page 9]
RFC 2613 SMON MIB June 1999
3.2 smonVlanStats
The smonVlanStats MIB group includes the control and statistics
objects related to 802.1Q VLANs. Specific statistics per 802.1Q
virtual LAN are supported. The group provides a high level view of
total VLAN usage, and relative non-unicast traffic usage.
It is an implementation-specific matter as to how the agent
determines the proper default-VLAN for untagged or priority-tagged
frames.
3.3 smonPrioStats
The smonPrioStatsTable provides a distribution based on the
user_priority field in the VLAN header.
Note that this table merely reports priority as encoded in VLAN
headers, not the priority (if any) given the frame for actual
switching purposes.
3.4 dataSourceCaps
The dataSourceCaps MIB group identifies all supported data sources on
an SMON device. An NMS MAY use this table to discover the RMON and
Copy Port attributes of each data source.
Upon restart of the agent, the dataSourceTable, ifTable and
entPhysicalTable are initialized for the available data sources. The
agent MAY modify these tables as data sources become known or are
removed (e.g. hot swap of interfaces, chassis cards or the discovery
of VLAN usage). It is understood that dataSources representing VLANs
may not always be instantiated immediately upon restart, but rather
as VLAN usage is detected by the agent. The agent SHOULD attempt to
create dataSource and interface entries for all dataSources as soon
as possible.
For each dataSourceCapsEntry representing a VLAN or entPhysicalEntry,
the agent MUST create an associated ifEntry with a ifType value of
associated dataSourceCapsIfIndex object.
The rationale of the above derives from the fact that according to
[16] and [17] an RMON dataSource MUST be associated with an ifEntry.
Specifically, the dataSourceCapsTable allows for an agent to map
Entity MIB physical entities (e.g., switch backplanes) and entire
VLANs to ifEntries with ifType "propVirtual(53)". This ifEntry values
will be used as the actual values in RMON control table dataSource
objects. This allows for physical entities and VLANs to be treated
as RMON data sources, and RMON functions to be applied to this type
Waterman, et al. Standards Track [Page 10]
RFC 2613 SMON MIB June 1999
of data sources.
3.5 portCopyConfig
The portCopyConfig MIB group includes the objects defined for the
control of the port copy functionality in a device.
The standard does not place a limit on the mode in which this copy
function may be used:
Mode 1 -- 1:1 Copy
Single dataSource copied to a single destination dataSource.
Agent MAY limit configuration based on ifTypes, ifSpeeds, half-
duplex/full-duplex, or agent resources. In this mode the single
instance of the portCopyDestDropEvents object refers to dropped
frames on the portCopyDest interface.
Mode 2 -- N:1 Copy
Multiple dataSources copied to a single destination dataSource.
Agent MAY limit configuration based on ifTypes, ifSpeeds, half-
duplex/full-duplex, portCopyDest over-subscription, or agent
resources. In this mode all N instances of the
portCopyDestDropEvents object SHOULD contain the same value, and
refer to dropped frames on the portCopyDest interface.
Mode 3 -- N:M Copy
Multiple dataSources copied to multiple destination dataSources.
Agent MAY limit configuration based on ifTypes, ifSpeeds, half-
duplex/full-duplex, portCopyDest over-subscription, or agent
resources. Since portCopyDestDropEvents is kept per destination
port, all instances of the portCopyDestDropEvents object
associated with (indexed by) a given portCopyDest SHOULD have the
same value (i.e. replicated or aliased for each instance
associated with a given portCopyDest).
The rows do not have an OwnerString, since multiple rows MAY be part
of the same portCopy operation. The agent is expected to activate or
deactivate entries one at a time, based on the rowStatus for the
given row. This can lead to unpredictable results in Modes 2 and 3
in applications utilizing the portCopy target traffic, if multiple
PDUs are used to fully configure the operation. It is RECOMMENDED
that an entire portCopy operation be configured in one SetRequest PDU
if possible.
Waterman, et al. Standards Track [Page 11]
RFC 2613 SMON MIB June 1999
The portCopyDest object MAY NOT reference an interface associated
with a packet-based VLAN (smonVlanDataSource.<V>), but this
dataSource type MAY be used as a portCopySource.
4. Control of Remote Network Monitoring Devices
Due to the complex nature of the available functions in these
devices, the functions often need user configuration. In many cases,
the function requires parameters to be set up for a data collection
operation. The operation can proceed only after these parameters are
fully set up.
Many functional groups in this MIB have one or more tables in which
to set up control parameters, and one or more data tables in which to
place the results of the operation. The control tables are typically
read/write in nature, while the data tables are typically read-only.
Because the parameters in the control table often describe resulting
data in the data table, many of the parameters can be modified only
when the control entry is not active. Thus, the method for modifying
these parameters is to de-activate the entry, perform the SNMP Set
operations to modify the entry, and then re-activate the entry.
Deleting the control entry causes the deletion of any associated data
entries, which also gives a convenient method for reclaiming the
resources used by the associated data.
Some objects in this MIB provide a mechanism to execute an action on
the remote monitoring device. These objects MAY execute an action as
a result of a change in the state of the object. For those objects
in this MIB, a request to set an object to the same value as it
currently holds would thus cause no action to occur.
To facilitate control by multiple managers, resources have to be
shared among the managers. These resources are typically the memory
and computation resources that a function requires.
The control mechanisms defined and used in this MIB are the same as
those defined in the RMON MIB [17], for control functionality and
interaction with multiple managers.
Waterman, et al. Standards Track [Page 12]
RFC 2613 SMON MIB June 1999
5. Definitions
SMON-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, Counter32,
Integer32, Counter64
FROM SNMPv2-SMI
RowStatus, TEXTUAL-CONVENTION
FROM SNMPv2-TC
rmon, OwnerString
FROM RMON-MIB
LastCreateTime, DataSource, rmonConformance, probeConfig
FROM RMON2-MIB
InterfaceIndex
FROM IF-MIB
MODULE-COMPLIANCE, OBJECT-GROUP
FROM SNMPv2-CONF;
switchRMON MODULE-IDENTITY
LAST-UPDATED "9812160000Z"
ORGANIZATION "IETF RMON MIB Working Group"
CONTACT-INFO
"IETF RMONMIB WG Mailing list: rmonmib@cisco.com
Rich Waterman
Allot Networks Inc.
Tel: +1-408-559-0253
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -