📄 rfc1971.txt
字号:
valid lifetime
- the length of time an address remains in the valid
state (i.e., the time until invalidation). The valid
lifetime must be greater then or equal to the preferred
lifetime. When the valid lifetime expires, the address
becomes invalid.
interface token
- a link-dependent identifier for an interface that is
(at least) unique per link. Stateless address
autoconfiguration combines an interface token with a
Thomson & Narten Standards Track [Page 6]
RFC 1971 IPv6 Stateless Address Autoconfiguration August 1996
prefix to form an address. From address
autoconfiguration's perspective, an interface token is
a bit string of known length. The exact length of an
interface token and the way it is created is defined in
a separate link-type specific document that covers
issues related to the transmission of IP over a
particular link type (e.g., [IPv6-ETHER]). In many
cases, the token will be the same as the interface's
link-layer address.
2.1. Requirements
Throughout this document, the words that are used to define the
significance of the particular requirements are capitalized. These
words are:
MUST
This word or the adjective "REQUIRED" means that the item is an
absolute requirement of this specification.
MUST NOT
This phrase means the item is an absolute prohibition of this
specification.
SHOULD
This word or the adjective "RECOMMENDED" means that there may exist
valid reasons in particular circumstances to ignore this item, but
the full implications should be understood and the case carefully
weighed before choosing a different course.
SHOULD NOT
This phrase means that there may exist valid reasons in particular
circumstances when the listed behavior is acceptable or even
useful, but the full implications should be understood and the case
carefully weighed before implementing any behavior described with
this label.
MAY
This word or the adjective "OPTIONAL" means that this item is truly
optional. One vendor may choose to include the item because a
particular marketplace requires it or because it enhances the
product, for example, another vendor may omit the same item.
Thomson & Narten Standards Track [Page 7]
RFC 1971 IPv6 Stateless Address Autoconfiguration August 1996
3. DESIGN GOALS
Stateless autoconfiguration is designed with the following goals in
mind:
o Manual configuration of individual machines before connecting them
to the network should not be required. Consequently, a mechanism is
needed that allows a host to obtain or create unique addresses for
each of its interfaces. Address autoconfiguration assumes that each
interface can provide a unique identifier for that interface (i.e.,
an "interface token"). In the simplest case, an interface token
consists of the interface's link-layer address. An interface token
can be combined with a prefix to form an address.
o Small sites consisting of a set of machines attached to a single
link should not require the presence of a stateful server or router
as a prerequisite for communicating. Plug-and-play communication
is achieved through the use of link-local addresses. Link-local
addresses have a well-known prefix that identifies the (single)
shared link to which a set of nodes attach. A host forms a link-
local address by appending its interface token to the link-local
prefix.
o A large site with multiple networks and routers should not require
the presence of a stateful address configuration server. In order
to generate site-local or global addresses, hosts must determine
the prefixes that identify the subnets to which they attach.
Routers generate periodic Router Advertisements that include
options listing the set of active prefixes on a link.
o Address configuration should facilitate the graceful renumbering of
a site's machines. For example, a site may wish to renumber all of
its nodes when it switches to a new network service provider.
Renumbering is achieved through the leasing of addresses to
interfaces and the assignment of multiple addresses to the same
interface. Lease lifetimes provide the mechanism through which a
site phases out old prefixes. The assignment of multiple addresses
to an interface provides for a transition period during which both
a new address and the one being phased out work simultaneously.
o System administrators need the ability to specify whether stateless
autoconfiguration, stateful autoconfiguration, or both should be
used. Router Advertisements include flags specifying which
mechanisms a host should use.
Thomson & Narten Standards Track [Page 8]
RFC 1971 IPv6 Stateless Address Autoconfiguration August 1996
4. PROTOCOL OVERVIEW
This section provides an overview of the typical steps that take
place when an interface autoconfigures itself. Autoconfiguration is
performed only on multicast-capable links and begins when a
multicast-capable interface is enabled, e.g., during system startup.
Nodes (both hosts and routers) begin the autoconfiguration process by
generating a link-local address for the interface. A link-local
address is formed by appending the interface's token to the well-
known link-local prefix.
Before the link-local address can be assigned to an interface and
used, however, a node must attempt to verify that this "tentative"
address is not already in use by another node on the link.
Specifically, it sends a Neighbor Solicitation message containing the
tentative address as the target. If another node is already using
that address, it will return a Neighbor Advertisement saying so. If
another node is also attempting to use the same address, it will send
a Neighbor Solicitation for the target as well. The exact number of
times the Neighbor Solicitation is (re)transmitted and the delay time
between consecutive solicitations is link-specific and may be set by
system management.
If a node determines that its tentative link-local address is not
unique, autoconfiguration stops and manual configuration of the
interface is required. To simplify recovery in this case, it should
be possible for an administrator to supply an alternate interface
token that overrides the default token in such a way that the
autoconfiguration mechanism can then be applied using the new
(presumably unique) interface token. Alternatively, link-local and
other addresses will need to be configured manually.
Once a node ascertains that its tentative link-local address is
unique, it assigns it to the interface. At this point, the node has
IP-level connectivity with neighboring nodes. The remaining
autoconfiguration steps are performed only by hosts; the
(auto)configuration of routers is beyond the scope of this document.
The next phase of autoconfiguration involves obtaining a Router
Advertisement or determining that no routers are present. If routers
are present, they will send Router Advertisements that specify what
sort of autoconfiguration a host should do. If no routers are
present, stateful autoconfiguration should be invoked.
Routers send Router Advertisements periodically, but the delay
between successive advertisements will generally be longer than a
host performing autoconfiguration will want to wait [DISCOVERY]. To
obtain an advertisement quickly, a host sends one or more Router
Thomson & Narten Standards Track [Page 9]
RFC 1971 IPv6 Stateless Address Autoconfiguration August 1996
Solicitations to the all-routers multicast group. Router
Advertisements contain two flags indicating what type of stateful
autoconfiguration (if any) should be performed. A "managed address
configuration" flag indicates whether hosts should use stateful
autoconfiguration to obtain addresses. An "other stateful
configuration" flag indicates whether hosts should use stateful
autoconfiguration to obtain additional information (excluding
addresses).
Router Advertisements also contain zero or more Prefix Information
options that contain information used by stateless address
autoconfiguration to generate site-local and global addresses. It
should be noted that the stateless and stateful address
autoconfiguration fields in Router Advertisements are processed
independently of one another, and a host may use both stateful and
stateless address autoconfiguration simultaneously. One Prefix
Information option field, the "autonomous address-configuration
flag", indicates whether or not the option even applies to stateless
autoconfiguration. If it does, additional option fields contain a
subnet prefix together with lifetime values indicating how long
addresses created from the prefix remain preferred and valid.
Because routers generate Router Advertisements periodically, hosts
will continually receive new advertisements. Hosts process the
information contained in each advertisement as described above,
adding to and refreshing information received in previous
advertisements.
For safety, all addresses must be tested for uniqueness prior to
their assignment to an interface. In the case of addresses created
through stateless autoconfig, however, the uniqueness of an address
is determined primarily by the portion of the address formed from an
interface token. Thus, if a node has already verified the uniqueness
of a link-local address, additional addresses created from the same
interface token need not be tested individually. In contrast, all
addresses obtained manually or via stateful address autoconfiguration
should be tested for uniqueness individually. To accommodate sites
that believe the overhead of performing Duplicate Address Detection
outweighs its benefits, the use of Duplicate Address Detection can be
disabled through the administrative setting of a per-interface
configuration flag.
To speed the autoconfiguration process, a host may generate its
link-local address (and verify its uniqueness) in parallel with
waiting for a Router Advertisement. Because a router may delay
responding to a Router Solicitation for a few seconds, the total time
needed to complete autoconfiguration can be significantly longer if
the two steps are done serially.
Thomson & Narten Standards Track [Page 10]
RFC 1971 IPv6 Stateless Address Autoconfiguration August 1996
4.1. Site Renumbering
Address leasing facilitates site renumbering by providing a mechanism
to time-out addresses assigned to interfaces in hosts. At present,
upper layer protocols such as TCP provide no support for changing
end-point addresses while a connection is open. If an end-point
address becomes invalid, existing connections break and all
communication to the invalid address fails. Even when applications
use UDP as a transport protocol, addresses must generally remain the
same during a packet exchange.
Dividing valid addresses into preferred and deprecated categories
provides a way of indicating to upper layers that a valid address may
become invalid shortly and that future communication using the
address will fail, should the address's valid lifetime expire before
communication ends. To avoid this scenario, higher layers should use
a preferred address (assuming one of sufficient scope exists) to
increase the likelihood that an address will remain valid for the
duration of the communication. It is up to system administrators to
set appropriate prefix lifetimes in order to minimize the impact of
failed communication when renumbering takes place. The deprecation
period should be long enough that most, if not all, communications
are using the new address at the time an address becomes invalid.
The IP layer is expected to provide a means for upper layers
(including applications) to select the most appropriate source
address given a particular destination and possibly other
constraints. An application may choose to select the source address
itself before starting a new communication or may leave the address
unspecified, in which case the upper networking layers will use the
mechanism provided by the IP layer to choose a suitable address on
the application's behalf.
Detailed address selection rules are beyond the scope of this
document.
5. PROTOCOL SPECIFICATION
Autoconfiguration is performed on a per-interface basis on
multicast-capable interfaces. For multihomed hosts,
autoconfiguration is performed independently on each interface.
Autoconfiguration applies primarily to hosts, with two exceptions.
Routers are expected to generate a link-local address using the
procedure outlined below. In addition, routers perform Duplicate
Address Detection on all addresses prior to assigning them to an
interface.
Thomson & Narten Standards Track [Page 11]
RFC 1971 IPv6 Stateless Address Autoconfiguration August 1996
5.1. Node Configuration Variables
A node MUST allow the following autoconfiguration-related variable to
be configured by system management for each multicast interface:
DupAddrDetectTransmits
The number of consecutive Neighbor Solicitation
messages sent while performing Duplicate Address
Detection on a tentative address. A value of zero
indicates that Duplicate Address Detection is not
performed on tentative addresses. A value of one
indicates a single transmission with no follow up
retransmissions.
Default: 1, but may be overridden by a link-type
specific value in the document that covers issues
related to the transmission of IP over a particular
link type (e.g., [IPv6-ETHER]).
Autoconfiguration also assumes the presence of the variable
RetransTimer as defined in [DISCOVERY]. For autoconfiguration
purposes, RetransTimer specifies the delay between consecutive
Neighbor Solicitation transmissions performed during Duplicate
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -