📄 rfc974.txt
字号:
this list is interpreted.
Interpreting the List of MX RRs
NOTE: This section only discusses how mailers choose which names to
try to deliver a message to, working from a list of RR's. It does
not discuss how the mailers actually make delivery. Where ever
delivering a message is mentioned, all that is meant is that the
mailer should do whatever it needs to do to transfer a message to a
remote site, given a domain name for that site. (For example, an
SMTP mailer will try to get an address for the domain name, which
involves another query to the domain system, and then, if it gets an
address, connect to the SMTP TCP port). The mechanics of actually
transferring the message over the network to the address associated
with a given domain name is not within the scope of this memo.
It is possible that the list of MXs in the response to the query will
be empty. This is a special case. If the list is empty, mailers
should treat it as if it contained one RR, an MX RR with a preference
value of 0, and a host name of REMOTE. (I.e., REMOTE is its only
MX). In addition, the mailer should do no further processing on the
list, but should attempt to deliver the message to REMOTE. The idea
Partridge [Page 4]
RFC 974 January 1986
Mail Routing and the Domain System
here is that if a domain fails to advertise any information about a
particular name we will give it the benefit of the doubt and attempt
delivery.
If the list is not empty, the mailer should remove irrelevant RR's
from the list according to the following steps. Note that the order
is significant.
For each MX, a WKS query should be issued to see if the domain
name listed actually supports the mail service desired. MX RRs
which list domain names which do not support the service should be
discarded. This step is optional, but strongly encouraged.
If the domain name LOCAL is listed as an MX RR, all MX RRs with a
preference value greater than or equal to that of LOCAL's must be
discarded.
After removing irrelevant RRs, the list can again be empty. This is
now an error condition and can occur in several ways. The simplest
case is that the WKS queries have discovered that none of the hosts
listed supports the mail service desired. The message is thus deemed
undeliverable, though extremely persistent mail systems might want to
try a delivery to REMOTE's address (if it exists) before returning
the message. Another, more dangerous, possibility is that the domain
system believes that LOCAL is handling message for REMOTE, but the
mailer on LOCAL is not set up to handle mail for REMOTE. For
example, if the domain system lists LOCAL as the only MX for REMOTE,
LOCAL will delete all the entries in the list. But LOCAL is
presumably querying the domain system because it didn't know what to
do with a message addressed to REMOTE. Clearly something is wrong.
How a mailer chooses to handle these situations is to some extent
implementation dependent, and is thus left to the implementor's
discretion.
If the list of MX RRs is not empty, the mailer should try to deliver
the message to the MXs in order (lowest preference value tried
first). The mailer is required to attempt delivery to the lowest
valued MX. Implementors are encouraged to write mailers so that they
try the MXs in order until one of the MXs accepts the message, or all
the MXs have been tried. A somewhat less demanding system, in which
a fixed number of MXs is tried, is also reasonable. Note that
multiple MXs may have the same preference value. In this case, all
MXs at with a given value must be tried before any of a higher value
are tried. In addition, in the special case in which there are
several MXs with the lowest preference value, all of them should be
tried before a message is deemed undeliverable.
Partridge [Page 5]
RFC 974 January 1986
Mail Routing and the Domain System
Minor Special Issues
There are a couple of special issues left out of the preceding
section because they complicated the discussion. They are treated
here in no particular order.
Wildcard names, those containing the character '*' in them, may be
used for mail routing. There are likely to be servers on the network
which simply state that any mail to a domain is to be routed through
a relay. For example, at the time that this RFC is being written, all
mail to hosts in the domain IL is routed through RELAY.CS.NET. This
is done by creating a wildcard RR, which states that *.IL has an MX
of RELAY.CS.NET. This should be transparent to the mailer since the
domain servers will hide this wildcard match. (If it matches *.IL
with HUJI.IL for example, a domain server will return an RR
containing HUJI.IL, not *.IL). If by some accident a mailer receives
an RR with a wildcard domain name in its name or data section it
should discard the RR.
Note that the algorithm to delete irrelevant RRs breaks if LOCAL has
a alias and the alias is listed in the MX records for REMOTE. (E.g.
REMOTE has an MX of ALIAS, where ALIAS has a CNAME of LOCAL). This
can be avoided if aliases are never used in the data section of MX
RRs.
Implementors should understand that the query and interpretation of
the query is only performed for REMOTE. It is not repeated for the
MX RRs listed for REMOTE. You cannot try to support more extravagant
mail routing by building a chain of MXs. (E.g. UNIX.BBN.COM is an MX
for RELAY.CS.NET and RELAY.CS.NET is an MX for all the hosts in .IL,
but this does not mean that UNIX.BBN.COM accepts any responsibility
for mail for .IL).
Finally, it should be noted that this is a standard for routing on
the Internet. Mailers serving hosts which lie on multiple networks
will presumably have to make some decisions about which network to
route through. This decision making is outside the scope of this
memo, although mailers may well use the domain system to help them
decide. However, once a mailer decides to deliver a message via the
Internet it must apply these rules to route the message.
Partridge [Page 6]
RFC 974 January 1986
Mail Routing and the Domain System
Examples
To illustrate the discussion above, here are three examples of how
mailers should route messages. All examples work with the following
database:
A.EXAMPLE.ORG IN MX 10 A.EXAMPLE.ORG
A.EXAMPLE.ORG IN MX 15 B.EXAMPLE.ORG
A.EXAMPLE.ORG IN MX 20 C.EXAMPLE.ORG
A.EXAMPLE.ORG IN WKS 10.0.0.1 TCP SMTP
B.EXAMPLE.ORG IN MX 0 B.EXAMPLE.ORG
B.EXAMPLE.ORG IN MX 10 C.EXAMPLE.ORG
B.EXAMPLE.ORG IN WKS 10.0.0.2 TCP SMTP
C.EXAMPLE.ORG IN MX 0 C.EXAMPLE.ORG
C.EXAMPLE.ORG IN WKS 10.0.0.3 TCP SMTP
D.EXAMPLE.ORG IN MX 0 D.EXAMPLE.ORG
D.EXAMPLE.ORG IN MX 0 C.EXAMPLE.ORG
D.EXAMPLE.ORG IN WKS 10.0.0.4 TCP SMTP
In the first example, an SMTP mailer on D.EXAMPLE.ORG is trying to
deliver a message addressed to A.EXAMPLE.ORG. From the answer to its
query, it learns that A.EXAMPLE.ORG has three MX RRs. D.EXAMPLE.ORG
is not one of the MX RRs and all three MXs support SMTP mail
(determined from the WKS entries), so none of the MXs are eliminated.
The mailer is obliged to try to deliver to A.EXAMPLE.ORG as the
lowest valued MX. If it cannot reach A.EXAMPLE.ORG it can (but is
not required to) try B.EXAMPLE.ORG. and if B.EXAMPLE.ORG is not
responding, it can try C.EXAMPLE.ORG.
In the second example, the mailer is on B.EXAMPLE.ORG, and is again
trying to deliver a message addressed to A.EXAMPLE.ORG. There are
once again three MX RRs for A.EXAMPLE.ORG, but in this case the
mailer must discard the RRs for itself and C.EXAMPLE.ORG (because the
MX RR for C.EXAMPLE.ORG has a higher preference value than the RR for
B.EXAMPLE.ORG). It is left only with the RR for A.EXAMPLE.ORG, and
can only try delivery to A.EXAMPLE.ORG.
In the third example, consider a mailer on A.EXAMPLE.ORG trying to
deliver a message to D.EXAMPLE.ORG. In this case there are only two
MX RRs, both with the same preference value. Either MX will accept
messages for D.EXAMPLE.ORG. The mailer should try one MX first (which
one is up to the mailer, though D.EXAMPLE.ORG seems most reasonable),
and if that delivery fails should try the other MX (e.g.
C.EXAMPLE.ORG).
Partridge [Page 7]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -