📄 rfc2785.txt
字号:
until an appropriate prime is obtained. As an example, the value of
k could be tested for primality. If k is prime, then the value of p
could be accepted, otherwise the prime generation algorithm would be
run again, until a value of p is produced with k prime.
However, since with primes of this form there is still an element of
order 2 (i.e. p-1), one bit of the private key could still be lost.
Thus, this method may not be appropriate in circumstances where the
loss of a single bit of the private key is a concern.
Another method to produce primes of this form is to choose the prime
p such that p = 2*q*k + 1 where k is small (i.e. only a few bits). In
this case, the leakage due to a small subgroup attack will be only a
few bits. Again, this would not be appropriate for circumstances
where the loss of even a few bits of the private key is a concern. In
this approach, q is large. Note that in DSA, q is limited to 160
bits for performance reasons, but need not be the case for Diffie-
Hellman.
Additionally, other methods (i.e. public key validation) can be
combined with this method in order to prevent the loss of a few bits
of the private key.
Zuccherato Informational [Page 6]
RFC 2785 Methods for Avoiding "Small-Subgroup" Attacks March 2000
3.4 Compatible Cofactor Exponentiation
This method of protection is specified in [P1363] and [KALISKI]. It
involves modifying the computation of ZZ by including j (the
cofactor) in the computations and is compatible with ordinary
Diffie-Hellman when both parties' public keys are valid. If a
party's public key is invalid, then the resulting ZZ will either be 1
or an element of order q; the small subgroup elements will either be
detected or cancelled. This method requires that gcd(j,q)=1.
Instead of computing ZZ as ZZ=yb^xa mod p, Party A would compute it
as ZZ=(yb^j)^c mod p where c=j^(-1)*xa mod q. (Similarly for Party
B.)
If the resulting value ZZ satisfies ZZ==1, then the key agreement
should be abandoned because the public key being used is invalid.
Note that when j is larger than q, as is usually the case with
Diffie-Hellman, this method is less efficient than the method of
Section 3.1.
3.5 Non-compatible Cofactor Exponentiation
This method of protection is specified in [P1363]. Similar to the
method of Section 3.4, it involves modifying the computation of ZZ by
including j (the cofactor) in the computations. If a party's public
key is invalid, then the resulting ZZ will either be 1 or an element
of order q; the small subgroup elements will either be detected or
cancelled. This method requires that gcd(j,q)=1.
Instead of computing ZZ as ZZ=yb^xa mod p, Party A would compute it
as ZZ=(yb^j)^xa mod p. (Similarly for Party B.) However, with this
method the resulting ZZ value is different from what is computed in
[RFC2631] and therefore is not interoperable with implementations
conformant to [RFC2631].
If the resulting value ZZ satisfies ZZ==1, then the key agreement
should be abandoned because the public key being used is invalid.
Note that when j is larger than q, as is usually the case with
Diffie-Hellman, this method is less efficient than the method of
Section 3.1.
Zuccherato Informational [Page 7]
RFC 2785 Methods for Avoiding "Small-Subgroup" Attacks March 2000
4. Ephemeral-Ephemeral Key Agreement
This situation is when both the sender and recipient of a message are
using ephemeral keys. While this situation is not possible in
S/MIME, it might be used in other protocol environments. Thus we
will briefly discuss protection for this case as well.
Implementers should note that some of the procedures described in
this section may be the subject of patents or pending patents.
Ephemeral-ephemeral key agreement gives an attacker more flexibility
since both parties' public keys can be changed and they can be
coerced into computing the same key from a small space. However, in
the ephemeral-static case, only the sender's public key can be
changed, and only the recipient can be coerced by an outside attacker
into computing a key from a small space.
Thus, in some ephemeral-ephemeral key agreements protection may be
necessary for both entities. One possibility is that the attacker
could modify both parties' public key so as to make their shared key
predictable. For example, the attacker could replace both ya and yb
with some element of small order, say -1. Then, with a certain
probability, both the sender and receiver would compute the same
shared value that comes from some small, easily exhaustible set.
Note that in this situation if protection was obtained from the
methods of Section 3.3, then each user must ensure that the other
party's public key does not come from the small set of elements of
small order. This can be done either by checking a list of such
elements, or by additionally applying the methods of Sections 3.1,
3.4 or 3.5.
Protection from these attacks is not necessary however if the other
party's ephemeral public key has been authenticated. The
authentication may be in the form of a signature, MAC, or any other
integrity protection mechanism. An example of this is in the
Station-To-Station protocol [STS]. Since the owner authenticates the
public key, a third party cannot modify it and therefore cannot mount
an attack. Thus, the only person that could attack an entity's
private key is the other authenticated entity in the key agreement.
However, since both public keys are ephemeral, they only protect the
current session that the attacker would have access to anyway.
5. Security Considerations
This entire document addresses security considerations in the
implementation of Diffie-Hellman key agreement.
Zuccherato Informational [Page 8]
RFC 2785 Methods for Avoiding "Small-Subgroup" Attacks March 2000
6. Intellectual Property Rights
The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the
IETF's procedures with respect to rights in standards-track and
standards-related documentation can be found in BCP-11. Copies of
claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such
proprietary rights by implementors or users of this specification can
be obtained from the IETF Secretariat.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technology that may be required to practice
this standard. Please address the information to the IETF Executive
Director.
7. References
[KALISKI] B.S. Kaliski, Jr., "Compatible cofactor multiplication for
Diffie-Hellman primitives", Electronics Letters, vol. 34,
no. 25, December 10, 1998, pp. 2396-2397.
[LAW] L. Law, A. Menezes, M. Qu, J. Solinas and S. Vanstone, "An
efficient protocol for authenticated key agreement",
Technical report CORR 98-05, University of Waterloo, 1998.
[LIM] C.H. Lim and P.J. Lee, "A key recovery attack on discrete
log- based schemes using a prime order subgroup", B.S.
Kaliski, Jr., editor, Advances in Cryptology - Crypto '97,
Lecture Notes in Computer Science, vol. 1295, 1997,
Springer-Verlag, pp. 249-263.
[P1363] IEEE P1363, Standard Specifications for Public Key
Cryptography, 1998, work in progress.
[PH] S.C Pohlig and M.E. Hellman, "An improved algorithm for
computing logarithms over GF(p) and its cryptographic
significance", IEEE Transactions on Information Theory,
vol. 24, 1972, pp. 106-110.
Zuccherato Informational [Page 9]
RFC 2785 Methods for Avoiding "Small-Subgroup" Attacks March 2000
[RFC2527] Chokhani, S. and W. Ford, "Internet X.509 Public Key
Infrastructure, Certificate Policy and Certification
Practices Framework", RFC 2527, March 1999.
[RFC2630] Housley, R., "Cryptographic Message Syntax", RFC 2630, June
1999.
[RFC2631] Rescorla, E., "Diffie-Hellman Key Agreement Method", RFC
2631, June 1999.
[RFC2633] Ramsdell, B., "S/MIME Version 3 Message Specification", RFC
2633, June 1999.
[STS] W. Diffie, P.C. van Oorschot and M. Wiener, "Authentication
and authenticated key exchanges", Designs, Codes and
Cryptography, vol. 2, 1992, pp. 107-125.
8. Author's Address
Robert Zuccherato
Entrust Technologies
750 Heron Road
Ottawa, Ontario
Canada K1V 1A7
EMail: robert.zuccherato@entrust.com
Zuccherato Informational [Page 10]
RFC 2785 Methods for Avoiding "Small-Subgroup" Attacks March 2000
9. Full Copyright Statement
Copyright (C) The Internet Society (2000). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Zuccherato Informational [Page 11]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -