📄 rfc1969.txt
字号:
RFC 1969 PPP DES Encryption June 1996
Ciphertext
The generation of this data is described in the next
section.
6. Encryption
Once the ECP has reached the Opened state, the sender MUST NOT apply
the encryption procedure to LCP packets nor ECP packets.
If the async control character map option has been negotiated on the
link, the sender applies mapping after the encryption algorithm has
been run.
The encryption algorithm is generally to pad the Protocol and
Information fields of a PPP packet to some multiple of 8 bytes, and
apply DES in Chaining Block Cipher mode with a 56-bit key K.
There are a lot of details concerning what constitutes the Protocol
and Information fields, in the presence or non-presence of Multilink,
and whether the ACFC and PFC options have been negotiated, and the
sort of padding chosen.
Regardless of whether ACFC has been negotiated on the link, the
sender applies the encryption procedure to only that portion of the
packet excluding the address and control field.
If the Multilink Protocol has been negotiated and encryption is to be
construed as being applied to each link separately, then the
encryption procedure is to be applied to the (possibly extended)
protocol and information fields of the packet in the Multilink
Protocol.
If the Multilink Protocol has been negotiated and encryption is to be
construed as being applied to the bundle, then the multilink
procedure is to be applied to the resulting DESE packets.
6.1. Padding Considerations
Since the DES algorithm operates on blocks of 8 octets, packets which
are of length not a multiple of 8 octets must be padded. This can be
injurious to the interpretation of some protocols which do not
contain an explicit length field in their protocol headers.
(Additional padding of the ciphered packet for the purposes of
transmission by HDLC hardware which requires an even number of bytes
should not be necessary since the information field will now be of
length a multiple of 8, and whether or not the packet is of even
length can be forced by use or absence of a leading zero in the
Sklower & Meyer Informational [Page 6]
RFC 1969 PPP DES Encryption June 1996
protocol field).
For protocols which do have an explicit length field, such as IP,
IPX, XNS, and CLNP, then padding may be accomplished by adding random
trailing garbage. Even when performing the Multilink protocol, if it
is only being applied to packets with explicit length fields, and if
care is taken so that all non-terminating fragments (i.e., those not
bearing the (E)nd bit) are of lengths divisible by 8; then no ill
effects will happen if garbage padding is applied only to terminating
fragments.
For certain cases, such as the PPP bridging protocol when the
trailing CRC is forwarded or when any bridging is being applied to
protocols not having explicit length fields, adding garbage changes
the interpretation of the packet. The self-describing padding option
[4] permits unambiguous removal of padded bytes; although it should
only be used when absolutely necessary as it may inadvertently
require adding as many as 8 octets to packets that could otherwise be
left unaltered.
Consider a packet, which by unlucky circumstance is already a
multiple of 8 octets, but terminates in the sequence 0x1, 0x2.
Self-describing padding would otherwise remove the trailing two
bytes. For purposes of coexistence with archaic HDLC chips where
it is necessary to transmit packets of even length, one would
normally only have to add an additional two octets (0x1, 0x2),
which could then be removed. However, since the packet was
initially a multiple of 8 bytes, an additional 8 bytes would need
to be added.
6.2. Generation of the Ciphertext
In this discussion, E[k] will denote the basic DES cipher determined
by a 56-bit key k acting on 64 bit blocks. and D[k] will denote the
corresponding decryption mechanism. The padded plaintext described
in the previous section then becomes a sequence of 64 bit blocks P[i]
(where i ranges from 1 to n). The circumflex character (^)
represents the bit-wise exclusive-or operation applied to 64-bit
blocks.
When encrypting the first packet to be transmitted in the opened
state let C[0] be the result of applying E[k] to the Initial Nonce
received in the peer's ECP DESE option; otherwise let C[0] be the
final block of the previously transmitted packet.
Sklower & Meyer Informational [Page 7]
RFC 1969 PPP DES Encryption June 1996
The ciphertext for the packet is generated by the iterative process
C[i] = E[k](P[i] ^ C[i-1])
for i running between 1 and n.
6.3. Retrieval of the Plaintext
When decrypting the first packet received in the opened state, let
C[0] be the result of applying E[k] to the Initial Nonce transmitted
in the ECP DESE option. The first packet will have sequence number
zero. For subsequent packets, let C[0] be the final block of the
previous packet in sequence space. Decryption is then accomplished
by
P[i] = C[i-1] ^ D[k](C[i]),
for i running between 1 and n.
6.4. Recovery after Packet Loss
Packet loss is detected when there is a discontinuity in the sequence
numbers of consecutive packets. Suppose packet number N - 1 has an
unrecoverable error or is otherwise lost, but packets N and N + 1 are
received correctly.
Since the algorithm in the previous section requires C[0] for packet
N to be C[last] for packet N - 1, it will be impossible to decode
packet N. However, all packets N + 1 and following can be decoded in
the usual way, since all that is required is the last block of
ciphertext of the previous packet (in this case packet N, which WAS
received).
7. MRU Considerations
Because padding can occur, and because there is an additional
protocol field in effect, implementations should take into account
the growth of the packets. As an example, if PFC had been
negotiated, and if the MRU before had been exactly a multiple of 8,
then the plaintext resulting combining a full sized data packets with
a one byte protocol field would require an additional 7 bytes of
padding, and the sequence number would be an additional 2 bytes so
that the information field in the DESE protocol is now 10 bytes
larger than that in the original packet. Because the convention is
that PPP options are independent of each other, negotiation of DESE
does not, by itself, automatically increase the MRU value.
Sklower & Meyer Informational [Page 8]
RFC 1969 PPP DES Encryption June 1996
8. Security Considerations
Security issues are the primary subject of this memo. This proposal
relies on exterior and unspecified methods for authentication and
retrieval of shared secrets.
It proposes no new technology for privacy, but merely describes a
convention for the application of the DES cipher to data transmission
between PPP implementation.
Any methodology for the protection and retrieval of shared secrets,
and any limitations of the DES cipher are relevant to the use
described here.
9. References
[1] Simpson, W., Editor, "The Point-to-Point Protocol (PPP)", STD 51,
RFC 1661, Daydreamer, July 1994.
[2] Meyer, G., "The PPP Encryption Protocol", RFC 1968, Spider
Systems, June 1996.
[3] Sklower, K., Lloyd, B., McGregor, G., and D. Carr, "The PPP
Multilink Protocol (MP)", RFC 1717, UC Berkeley, November 1994.
[4] Simpson, W., Editor, "PPP LCP Extensions", RFC 1570, Daydreamer,
January 1994.
[5] National Bureau of Standards, "Data Encryption Standard", FIPS
PUB 46 (January 1977).
[6] National Bureau of Standards, "DES Modes of Operation", FIPS PUB
81 (December 1980).
[7] Schneier, B., "Applied Cryptography - Protocols Algorithms, and
source code in C", John Wiley & Sons, Inc. 1994. There is an
errata associated with the book, and people can get a copy by
sending e-mail to schneier@counterpane.com.
Sklower & Meyer Informational [Page 9]
RFC 1969 PPP DES Encryption June 1996
10. Authors' Addresses
Keith Sklower
Computer Science Department
384 Soda Hall, Mail Stop 1776
University of California
Berkeley, CA 94720-1776
Phone: (510) 642-9587
EMail: sklower@CS.Berkeley.EDU
Gerry M. Meyer
Spider Systems
Stanwell Street
Edinburgh EH6 5NG
Scotland, UK
Phone: (UK) 131 554 9424
Fax: (UK) 131 554 0649
EMail: gerry@spider.co.uk
Sklower & Meyer Informational [Page 10]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -