📄 rfc2036.txt
字号:
is multiply homed within network service providers.
There are also additional constraints placed on the non-transit
network domain where the network has exterior connections to other
peer networks. Even in the case where the network domain uses a
class-less interior routing protocol, there is the additional
consideration that this requirement for use of a class-less routing
domain is transitive to other connected network domains. An second
network domain, externally connected to the class-less domain routing
part of the Class A space, will interpret the boundary reachability
advertisement as a complete Class A network advertisement, if using
class-full routing. Even if both network domains are connected to the
same network provider the provider's default routing advertisement
default to the class-full domain will be overridden by the assumed
class A advertisement through the domain-to-domain connection,
leading to unintended traffic diversion. The diversion occurs in this
case as the traffic directed to parts of the Class A network which
are not deployed within the first domain will transit the first
domain before entering the network service provider's domain.
It is also possible to have configurations with unintended routing
holes. An example of such a configuration is two stub clients of
different network service providers, both using class-less interior
routing (X and Y), both directly connected to a third network domain
Huston Informational [Page 5]
RFC 2036 Components of the Class A Address Space October 1996
(Z), which uses class-full interior routing, which is configured as a
transit between X and Y. X's advertisement of a component of a Class
A to Z will be assumed by Z to be a complete Class A network, and as
such will be advertised to Y, overriding Y's default route received
from the network service provider. Y will pass all Class A addressed
traffic to Z, who will in turn pass it to X. As X is configured as a
non-transit stub network X must discard all non-locally addressed
traffic.
Thus reasonable operational practice would be to ensure that if a
network domain deploys a component of the Class A address space, the
network domain is configured to use class-less interior routing
protocols, and the network has a single exterior connection to a
class-less network provider domain, with the boundary configured as a
class-less routing exchange. Multiply homed network domains do infer
a common requirement of class-less routing exchanges and interior
class-less routing protocols across all peer connected network
domains.
It is possible to propose that multi homed network domains should
probably not get subnets of a class A for these reasons, although
with an increasing diversity of network service providers instances
of multi-homed network domains may become more prevalent, and the
requirement to transition to an interior class-less routing structure
as a consequence of moving to a multi-homed configuration may not be
explicitly apparent to all network domains.
Potential Guidelines for Allocation of an Address Prefix from the Class
A Address Space
To summarise the possible guidelines for allocation from the Class A
space, such addresses should only be assigned to network domains
which:
- have no exterior connection (in which case the domain can use
either class-full or class-less interior routing protocols without
further implication),
or
- are a component of a private internet domain which uses class-full
routing exchanges and no other part of the same Class A is
assigned into the domain (this is probably an unlikely scenario
given a probable direction to use the Class A space as the major
resource for the unallocated pool of addresses for allocation),
Huston Informational [Page 6]
RFC 2036 Components of the Class A Address Space October 1996
or
- have a single default exterior connection to a class-less routing
domain, use class-full routing protocols and explicitly direct a
subnet default route to the exterior connection,
or
- use class-less interior routing protocols and connect only to
other network domains which also use class-less interior routing
protocols.
It is a reasonable objective to nominate a transition objective to
the final configuration (uniform use of class-less routing domains
within the Internet) which would enable deployment of components of
the Class A space uniformly across the Internet.
Related Potential Activities
Given the pressures on the remaining Class C address space in the
unallocated address pool, it is noted that there would be widespread
deployment of components of the remaining Class A space in class-less
allocation guidelines. There is a consequent requirement for
widespread deployment of class-less interior routing protocols in
order to ensure continued correct operation of the routed Internet.
This is a more significant transition than that deployed to date with
the network service providers' deployment of Class-less Inter-Domain
Routing (CIDR) protocols, in that there is a necessary transition to
deploy Class-less Interior Routing Protocols (CIRP) within a large
number of network domains which are currently configured with class-
full routing.
However this would appear to be a necessary task if we wish to
continue to utilise a pool of globally unique Internet addresses to
allocate to new systems and networks, but one requiring significant
effort considering the space of the routing transition required to
make this work.
There are a number of directed activities which can assist in this
transition:
- The network registries commence initial class-less allocation from
the unallocated Class A space to those entities who either:
o operate a CIRP environment, and either have no external
connectivity, or are singly homed to a network service provider
using a CIDR environment, with no other exterior connections,
Huston Informational [Page 7]
RFC 2036 Components of the Class A Address Space October 1996
or
o operate a class-full routing protocol, and either have no
external connectivity, or are singly homed to a network service
provider using a CIDR environment, with no other exterior
connections, and are willing to point the subnet default route
towards the network service provider.
- In deploying the Class A space there is a requirement within the
vendors' product sets to allow explicit configuration of whether
the router operates in a class-less or class-full mode, with
correct behaviour of the default route in each case. Class-full
mode of operation must also allow explicit configuration of
subnet default behaviour as to whether to follow the default
route, or to operate a subnet default sink.
- There is a similar, but longer term, activity within the host
configuration environment to support a mode of address
configuration which uses a local network prefix and host address,
possibly in addition to the current configuration mode of class-
full network, subnet and host address
- Internet Service Providers also must support full class-less
configurations in both interior routing configurations and
interdomain peering routing exchanges, and provide support to
client network domains operating a class-less boundary routing
exchange configuration and be able to undertake proxy aggregation
as permitted.
Security Considerations
Correct configuration of the routing environment of the Internet is
essential to the secure operation of the Internet.
The potential use of the Class A space raises no additional
considerations in this area.
Huston Informational [Page 8]
RFC 2036 Components of the Class A Address Space October 1996
References
[CIDR]
Fuller, V., T. Li, J. Yu, and K. Varadhan, "Classless Inter-
Domain Routing (CIDR): an Address Assignment and Aggregation
Strategy", RFC 1519, BARRnet, cisco, MERIT, OARnet, September
1993.
Author's Address
Geoff Huston
Telstra Internet
Locked Bag 5744
Canberra ACT 2601
Australia
phone: +61 6 208 1908
email: gih@telstra.net
Huston Informational [Page 9]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -