📄 rfc2215.txt
字号:
Network Working Group S. Shenker
Request for Comments: 2215 J. Wroclawski
Category: Standards Track Xerox PARC/MIT LCS
September 1997
General Characterization Parameters for
Integrated Service Network Elements
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Abstract
This memo defines a set of general control and characterization
parameters for network elements supporting the IETF integrated
services QoS control framework. General parameters are those with
common, shared definitions across all QoS control services.
1. Introduction
This memo defines the set of general control and characterization
parameters used by network elements supporting the integrated
services framework. "General" means that the parameter has a common
definition and shared meaning across all QoS control services.
Control parameters are used by applications to provide information to
the network related to QoS control requests. An example is the
traffic specification (TSpec) generated by application senders and
receivers.
Characterization parameters are used to discover or characterize the
QoS management environment along the path of a packet flow requesting
active end-to-end QoS control. These characterizations may
eventually be used by the application requesting QoS control, or by
other network elements along the path. Examples include information
about which QoS control services are available along a network path
and estimates of the available path bandwidth.
Individual QoS control service specifications may refer to these
parameter definitions as well as defining additional parameters
specific to the needs of that service.
Shenker & Wroclawski Standards Track [Page 1]
RFC 2215 General Characterization Parameters September 1997
Parameters are assigned machine-oriented ID's using a method
described in [RFC 2216] and summarized here. These ID's may be used
within protocol messages (e.g., as described in [RFC 2210]) or
management interfaces to describe the parameter values present. Each
parameter ID is composed from two numerical fields, one identifying
the service associated with the parameter (the <service_number>), and
the other (the <parameter_number>) identifying the parameter itself.
Because the definitions of the parameters defined in this note are
common to all QoS control services, the <parameter_number> values for
the parameters defined here are assigned from the "general
parameters" range (1 - 127).
NOTE: <parameter_numbers> in the range 128 - 254 name parameters
with definitions specific to a particular QoS control service. In
contrast to the general parameters described here, it is necessary
to consider both the <service_number> and <parameter_number> to
determine the meaning of the parameter.
Service number 1 is reserved for use as described in Section 2 of
this note. Service numbers 2 through 254 will be allocated to
individual QoS control services. Currently, Guaranteed service
[RFC 2212] is allocated number 2, and Controlled-load service [RFC
2211] is allocated number 5.
In this note, the textual form
<service_number, parameter_number>
is used to write a service_number, parameter_number pair. The range
of possible of service_number and parameter_number values specified
in [RFC 2216] allow the parameter ID to directly form the tail
portion of a MIB object ID representing the parameter. This
simplifies the task of making parameter values available to network
management applications.
The definition of each parameter used to characterize a path through
the network describes two types of values; local and composed. A
Local value gives information about a single network element.
Composed values reflect the running composition of local values along
a path, specified by some composition rule. Each parameter
definition specifies the composition rule for that parameter. The
composition rule tells how to combine an incoming composed value
(from the already-traversed portion of the path) and the local value,
to give a new composed value which is passed to the next network
element in the path. Note that the composition may proceed either
Shenker & Wroclawski Standards Track [Page 2]
RFC 2215 General Characterization Parameters September 1997
downstream, toward the receiver(s), or upstream, toward the sender.
Each parameter may give only one definition for the local value, but
may potentially give more than one definition for composition rules
and composed values. This is because it may be useful to compose the
same local value several times following different composition rules.
Because characterization parameters are used to compute the
properties of a specific path through the internetwork, all
characterization parameter definitions are conceptually "per-next-
hop", as opposed to "per interface" or "per network element". In
cases where the network element is (or is controlling) a shared media
or large-cloud subnet, the element may need to provide different
values for different next-hops within the cloud. In practice, it may
be appropriate for vendors to choose and document a tolerance range,
such that if all next-hop values are within the tolerance range only
a single value need be stored and provided.
Local and composed characterization parameter values have distinct
ID's so that a network management entity can examine the value of
either a local or path-composed parameter at any point within the
network.
Each parameter definition includes a description of the minimal
properties, such as range and precision, required of any wire
representation of that parameter's values. Each definition also
includes an XDR [RFC 1832] description of the parameter, describing
an appropriate external (wire) data representation for the
parameter's values. This dual definition is intended to encourage a
common wire representation format whenever possible, while still
allowing other representations when required by the specific
circumstances (e.g., ASN.1 within SNMP).
The message formats specified in [RFC 2210] for use with the RSVP
setup protocol use the XDR data representation parameters.
All of the parameters described in this note are mandatory, in the
sense that a network element claiming to support integrated service
must recognize arriving values in setup and management protocol
messages, process them correctly, and export a reasonable value in
response. For some parameters, the specification requires that the
network element compute and export an *accurate* local value. For
other parameters, it is acceptable for the network element to
indicate that it cannot compute and export an accurate local value.
The definition of these parameters provides a reserved value which
indicates "indeterminate" or "invalid". This value signals that an
element cannot process the parameter accurately, and consequently
that the result of the end-to-end composition is also questionable.
Shenker & Wroclawski Standards Track [Page 3]
RFC 2215 General Characterization Parameters September 1997
NOTE (temporary): Previous versions of this and the RSVP use
document used both the reserved-value approach and a separate
INVALID flag to record this fact. Now, the reserved-value
approach is used exclusively. This is so that any protocol which
retrieves a parameter value, including SNMP, can carry the invalid
indication without needing a separate flag. The INVALID flag
remains in the RSVP message format but is reserved for use only
with a possible future service-composition scheme.
2. Default and Service-Specific Values for General Parameters
General parameters have a common *definition* across all QoS control
services. Frequently, the same *value* of a general parameter will be
correct for all QoS control services offered by a network element. In
this circumstance, there is no need to export a separate copy of the
value for each QoS control service; instead the node can export one
number which applies to all supported services.
A general parameter value which applies to all services supported at
a network node is called a default or global value. For example, if
all of the QoS control services provided at a node support the same
maximum packet size, the node may export a single default value for
the PATH_MTU parameter described in Section 3, rather than providing
a separate copy of the value for each QoS control service. In the
common case, this reduces both message size and processing overhead
for the setup protocol.
Occasionally an individual service needs to report a value differing
from the default value for a particular general parameter. For
example, if the implementation of Guaranteed Service [RFC 2212] at a
router is restricted by scheduler or hardware considerations to a
maximum packet size smaller than supported by the router's best-
effort forwarding path, the implementation may wish to export a
"service-specific" value of the PATH_MTU parameter so that
applications using the Guaranteed service will function correctly.
In the example above, the router might supply a value of 1500 for the
default PATH_MTU parameter, and a value of 250 for the PATH_MTU
parameter applying to guaranteed service. In this case, the setup
protocol providing path characterization carries (and delivers to the
application) both a value for Guaranteed service and a value for
other services.
The distinction between default and service-specific parameter values
makes no sense for non-general parameters (those defined by a
specific QoS control service, rather than this note), because both
the definition and value of the parameter are always specific to the
particular service.
Shenker & Wroclawski Standards Track [Page 4]
RFC 2215 General Characterization Parameters September 1997
The distinction between default and service-specific values for
general parameters is reflected in the parameter ID name space. This
allows network nodes, setup protocols, and network management tools
to distinguish default from service-specific values, and to determine
which service a service-specific parameter value is associated with.
Service number 1 is used to indicate the default value. A parameter
value identified by the ID:
<1, parameter_number>
is a default value, which applies to all services unless it is
overridden by a service-specific value for the same parameter.
A parameter value identified by the ID:
<service_number, parameter_number>
where service_number is not equal to 1, is a service-specific value.
It applies only to the service identified by service_number.
These service-specific values are also called override values. This
is because when both service-specific and default values are present
for a parameter, the service-specific value overrides the default
value (for the service to which it applies). The rules for composing
service-specific and global general parameters support this override
capability. The basic rule is to use the service-specific value if
it exists, and otherwise the global value.
A complete summary of the characterization parameter composition
process is given below. In this summary, the "arriving value" is the
incompletely composed parameter value arriving from a neighbor node.
The "local value" is the (global or service-specific) value made
available by the local node. The "result" is the newly composed value
to be sent to the next node on the data path.
1. Examine the <service_number, parameter_number> pair associated
with the arriving value. This information is conveyed by the setup
protocol together with the arriving value.
2. If the arriving value is for a parameter specific to a single
service (this is true when the parameter_number is larger than
128), compose the arriving value with the local value exported by
the specified service, and pass the result to the next hop. In this
case there is no need to consider global values, because the
parameter itself is specific to just one service.
Shenker & Wroclawski Standards Track [Page 5]
RFC 2215 General Characterization Parameters September 1997
3. If the arriving value is a service-specific value for a
generally defined parameter (the parameter_number is 127 or less,
and the service_number is other than 1), and the local
implementation of that service also exports a service-specific
value for the parameter, compose the service-specific arriving
value and the service-specific local value of the parameter, and
pass the result as a service-specific value to the next-hop node.
4. If the arriving value is a service-specific value for a general
parameter (the parameter_number is 127 or less, and the
service_number is other than 1), and the local implementation of
that service does *not* export a service-specific value, compose
the service-specific arriving value with the global value for that
parameter exported by the local node, and pass the result as a
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -