📄 rfc1716.txt
字号:
This word means that the item is an absolute requirement of the
specification.
o MUST IMPLEMENT
This phrase means that this specification requires that the
item be implemented, but does not require that it be enabled by
default.
o MUST NOT
This phrase means that the item is an absolute prohibition of
the specification.
o SHOULD
This word means that there may exist valid reasons in
particular circumstances to ignore this item, but the full
implications should be understood and the case carefully
weighed before choosing a different course.
o SHOULD IMPLEMENT
This phrase is similar in meaning to SHOULD, but is used when
we recommend that a particular feature be provided but does not
necessarily recommend that it be enabled by default.
o SHOULD NOT
This phrase means that there may exist valid reasons in
particular circumstances when the described behavior is
acceptable or even useful, but the full implications should be
understood and the case carefully weighed before implementing
any behavior described with this label.
o MAY
This word means that this item is truly optional. One vendor
may choose to include the item because a particular marketplace
requires it or because it enhances the product, for example;
another vendor may omit the same item.
Almquist & Kastenholz [Page 5]
RFC 1716 Towards Requirements for IP Routers November 1994
1.1.3 Compliance
Some requirements are applicable to all routers. Other
requirements are applicable only to those which implement
particular features or protocols. In the following paragraphs,
Relevant refers to the union of the requirements applicable to all
routers and the set of requirements applicable to a particular
router because of the set of features and protocols it has
implemented.
Note that not all Relevant requirements are stated directly in
this memo. Various parts of this memo incorporate by reference
sections of the Host Requirements specification, [INTRO:2] and
[INTRO:3]. For purposes of determining compliance with this memo,
it does not matter whether a Relevant requirement is stated
directly in this memo or merely incorporated by reference from one
of those documents.
An implementation is said to be conditionally compliant if it
satisfies all of the Relevant MUST, MUST IMPLEMENT, and MUST NOT
requirements. An implementation is said to be unconditionally
compliant if it is conditionally compliant and also satisfies all
of the Relevant SHOULD, SHOULD IMPLEMENT, and SHOULD NOT
requirements. An implementation is not compliant if it is not
conditionally compliant (i.e., it fails to satisfy one or more of
the Relevant MUST, MUST IMPLEMENT, or MUST NOT requirements).
For any of the SHOULD and SHOULD NOT requirements, a router may
provide a configuration option that will cause the router to act
other than as specified by the requirement. Having such a
configuration option does not void a router's claim to
unconditional compliance as long as the option has a default
setting, and that leaving the option at its default setting causes
the router to operate in a manner which conforms to the
requirement.
Likewise, routers may provide, except where explicitly prohibited
by this memo, options which cause them to violate MUST or MUST NOT
requirements. A router which provides such options is compliant
(either fully or conditionally) if and only if each such option
has a default setting which causes the router to conform to the
requirements of this memo. Please note that the authors of this
memo, although aware of market realities, strongly recommend
against provision of such options. Requirements are labeled MUST
or MUST NOT because experts in the field have judged them to be
particularly important to interoperability or proper functioning
in the Internet. Vendors should weigh carefully the customer
Almquist & Kastenholz [Page 6]
RFC 1716 Towards Requirements for IP Routers November 1994
support costs of providing options which violate those rules.
Of course, this memo is not a complete specification of an IP
router, but rather is closer to what in the OSI world is called a
profile. For example, this memo requires that a number of
protocols be implemented. Although most of the contents of their
protocol specifications are not repeated in this memo,
implementors are nonetheless required to implement the protocols
according to those specifications.
1.2 Relationships to Other Standards
There are several reference documents of interest in checking the
current status of protocol specifications and standardization:
o INTERNET OFFICIAL PROTOCOL STANDARDS
This document describes the Internet standards process and lists
the standards status of the protocols. As of this writing, the
current version of this document is STD 1, RFC 1610, [ARCH:7].
This document is periodically re-issued. You should always
consult an RFC repository and use the latest version of this
document.
o Assigned Numbers
This document lists the assigned values of the parameters used
in the various protocols. For example, IP protocol codes, TCP
port numbers, Telnet Option Codes, ARP hardware types, and
Terminal Type names. As of this writing, the current version of
this document is STD 2, RFC 1700, [INTRO:7]. This document is
periodically re-issued. You should always consult an RFC
repository and use the latest version of this document.
o Host Requirements
This pair of documents reviews the specifications that apply to
hosts and supplies guidance and clarification for any
ambiguities. Note that these requirements also apply to
routers, except where otherwise specified in this memo. As of
this writing (December, 1993) the current versions of these
documents are RFC 1122 and RFC 1123, (STD 3) [INTRO:2], and
[INTRO:3] respectively.
o Router Requirements (formerly Gateway Requirements)
This memo.
Note that these documents are revised and updated at different
times; in case of differences between these documents, the most
recent must prevail.
Almquist & Kastenholz [Page 7]
RFC 1716 Towards Requirements for IP Routers November 1994
These and other Internet protocol documents may be obtained from
the:
The InterNIC
DS.INTERNIC.NET
InterNIC Directory and Database Service
+1 (800) 444-4345 or +1 (619) 445-4600
info@internic.net
1.3 General Considerations
There are several important lessons that vendors of Internet software
have learned and which a new vendor should consider seriously.
1.3.1 Continuing Internet Evolution
The enormous growth of the Internet has revealed problems of
management and scaling in a large datagram-based packet
communication system. These problems are being addressed, and as
a result there will be continuing evolution of the specifications
described in this memo. New routing protocols, algorithms, and
architectures are constantly being developed. New and additional
internet-layer protocols are also constantly being devised.
Because routers play such a crucial role in the Internet, and
because the number of routers deployed in the Internet is much
smaller than the number of hosts, vendors should expect that
router standards will continue to evolve much more quickly than
host standards. These changes will be carefully planned and
controlled since there is extensive participation in this planning
by the vendors and by the organizations responsible for operation
of the networks.
Development, evolution, and revision are characteristic of
computer network protocols today, and this situation will persist
for some years. A vendor who develops computer communications
software for the Internet protocol suite (or any other protocol
suite!) and then fails to maintain and update that software for
changing specifications is going to leave a trail of unhappy
customers. The Internet is a large communication network, and the
users are in constant contact through it. Experience has shown
that knowledge of deficiencies in vendor software propagates
quickly through the Internet technical community.
Almquist & Kastenholz [Page 8]
RFC 1716 Towards Requirements for IP Routers November 1994
1.3.2 Robustness Principle
At every layer of the protocols, there is a general rule (from
[TRANS:2] by Jon Postel) whose application can lead to enormous
benefits in robustness and interoperability:
Be conservative in what you do,
be liberal in what you accept from others.
Software should be written to deal with every conceivable error,
no matter how unlikely; sooner or later a packet will come in with
that particular combination of errors and attributes, and unless
the software is prepared, chaos can ensue. In general, it is best
to assume that the network is filled with malevolent entities that
will send packets designed to have the worst possible effect.
This assumption will lead to suitably protective design. The most
serious problems in the Internet have been caused by unforeseen
mechanisms triggered by low probability events; mere human malice
would never have taken so devious a course!
Adaptability to change must be designed into all levels of router
software. As a simple example, consider a protocol specification
that contains an enumeration of values for a particular header
field - e.g., a type field, a port number, or an error code; this
enumeration must be assumed to be incomplete. If the protocol
specification defines four possible error codes, the software must
not break when a fifth code shows up. An undefined code might be
logged, but it must not cause a failure.
The second part of the principle is almost as important: software
on hosts or other routers may contain deficiencies that make it
unwise to exploit legal but obscure protocol features. It is
unwise to stray far from the obvious and simple, lest untoward
effects result elsewhere. A corollary of this is watch out for
misbehaving hosts; router software should be prepared to survive
in the presence of misbehaving hosts. An important function of
routers in the Internet is to limit the amount of disruption such
hosts can inflict on the shared communication facility.
1.3.3 Error Logging
The Internet includes a great variety of systems, each
implementing many protocols and protocol layers, and some of these
contain bugs and misfeatures in their Internet protocol software.
As a result of complexity, diversity, and distribution of
function, the diagnosis of problems is often very difficult.
Almquist & Kastenholz [Page 9]
RFC 1716 Towards Requirements for IP Routers November 1994
Problem diagnosis will be aided if routers include a carefully
designed facility for logging erroneous or strange events. It is
important to include as much diagnostic information as possible
when an error is logged. In particular, it is often useful to
record the header(s) of a packet that caused an error. However,
care must be taken to ensure that error logging does not consume
prohibitive amounts of resources or otherwise interfere with the
operation of the router.
There is a tendency for abnormal but harmless protocol events to
overflow error logging files; this can be avoided by using a
circular log, or by enabling logging only while diagnosing a known
failure. It may be useful to filter and count duplicate
successive messages. One strategy that seems to work well is to
both:
o Always count abnormalities and make such counts accessible
through the management protocol (see Chapter 8); and
o Allow the logging of a great variety of events to be
selectively enabled. For example, it might useful to be able
to log everything or to log everything for host X.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -