📄 rfc2894.txt
字号:
interface, unmark that prefix for deletion and update the
lifetimes and RA flags. For each New Prefix which is not already
configured, add the prefix and, if appropriate, configure an
address with that prefix.
Delete any prefixes which are still marked for deletion, together
with any addresses which match those prefixes but do not match any
prefix which is not marked for deletion.
After processing all the Prefix Control Operations on all the
interfaces, an implementation MUST record the SegmentNumber of the
packet in a list associated with the SequenceNumber.
If the Command has the R flag set, compute the Checksum and
schedule the Result message for transmission after a random time
interval uniformly distributed between 0 and MaxDelay
milliseconds. This interval SHOULD begin at the conclusion of
processing, not the beginning. A copy of the Result message MAY
be saved to be retransmitted in response to a duplicate Command.
4.4. Summary of Effects
The only Neighbor Discovery [ND] parameters which can be affected by
Router Renumbering are the following.
Crawford Standards Track [Page 17]
RFC 2894 Router Renumbering for IPv6 August 2000
A router's addresses and advertised prefixes, including the prefix
lengths.
The flag bits (L and A, and any which may be defined in the
future) and the valid and preferred lifetimes which appear in a
Router Advertisement Prefix Information Option.
That unnamed property of the lifetimes which specifies whether
they are fixed values or decrementing in real time.
Other internal router information, such as the time until the next
unsolicited Router Advertisement or MIB variables MAY be affected as
needed.
All configuration changes resulting from Router Renumbering SHOULD be
saved to non-volatile storage where this facility exists. The
problem of properly restoring prefix lifetimes from non-volatile
storage exists independently of Router Renumbering and deserves
careful attention, but is outside the scope of this document.
5. Sequence Number Reset
It may prove necessary in practice to reset a router's Recorded
Sequence Number. This is a safe operation only when all
cryptographic keys previously used to authenticate RR Commands have
expired or been revoked. For this reason, the Sequence Number Reset
message is defined to accomplish both functions.
When a Sequence Number Reset (SNR) has been authenticated and has
passed the header check, the router MUST invalidate all keys which
have been used to authenticate previous RR Commands, including the
key which authenticated the SNR itself. Then it MUST discard any
saved RR Result messages, clear the list of recorded SegmentNumbers
and reset the Recorded Sequence Number to zero.
If the router has no other, unused authentication keys already
available for Router Renumbering use it SHOULD establish one or more
new valid keys. The details of this process will depend on whether
manual keying or a key management protocol is used. In either case,
if no keys are available, no new Commands can be processed.
A SNR message SHOULD contain no PCOs, since they will be ignored. If
and only if the R flag is set in the SNR message, a router MUST
respond with a Result Message containing no Match Reports. The
header and transmission of the Result are as described in section 3.
The invalidation of authentication keys caused by a valid SNR message
will cause retransmitted copies of that message to be ignored.
Crawford Standards Track [Page 18]
RFC 2894 Router Renumbering for IPv6 August 2000
6. IANA Considerations
Following the policies outlined in [IANACON], new values of the Code
field in the Router Renumbering Header (section 3.1) and the OpCode
field of the Match-Prefix Part (section 3.2.1.1) are to be allocated
by IETF consensus only.
7. Security Considerations
The Router Renumbering mechanism proposed here is very powerful and
prevention of spoofing it is important. Replay of old messages must,
in general, be prevented (even though a narrow class of messages
exists for which replay would be harmless). What constitutes a
sufficiently strong authentication algorithm may change from time to
time, but algorithms should be chosen which are strong against
current key-recovery and forgery attacks.
Authentication keys must be as well protected as any other access
method that allows reconfiguration of a site's routers. Distribution
of keys must not expose them or permit alteration, and key validity
must be limited in terms of time and number of messages
authenticated.
Note that although a reset of the Recorded Sequence Number requires
the cancellation of previously-used authentication keys, introduction
of new keys and expiration of old keys does not require resetting the
Recorded Sequence Number.
7.1. Security Policy and Association Database Entries
The Security Policy Database (SPD) [IPSEC] of a router implementing
this specification MUST cause incoming Router Renumbering Command
packets to either be discarded or have IPsec applied. (The
determination of "discard" or "apply" MAY be based on the source
address.) The resulting Security Association Database (SAD) entries
MUST ensure authentication and integrity of the destination address
and the RR Header and Message Body, and the body length implied by
the IPv6 length and intervening extension headers. These
requirements are met by the use of the Authentication Header [AH] in
transport or tunnel mode, or the Encapsulating Security Payload [ESP]
in tunnel mode with non-NULL authentication. The mandatory-to-
implement IPsec authentication algorithms (other than NULL) seem
strong enough for Router Renumbering at the time of this writing.
Note that for the SPD to distinguish Router Renumbering from other
ICMP packets requires the use of the ICMP Type field as a selector.
This is consistent with, although not mentioned by, the Security
Architecture specification [IPSEC].
Crawford Standards Track [Page 19]
RFC 2894 Router Renumbering for IPv6 August 2000
At the time of this writing, there exists no multicast key management
protocol for IPsec and none is on the horizon. Manually configured
Security Associations will therefore be common. The occurrence of
"from traffic" in the table below would therefore more realistically
be a wildcard or a fixed range. Use of a small set of shared keys
per management station suffices, so long as key distribution and
storage are sufficiently safeguarded.
A sufficient set of SPD entries for incoming traffic could select
Field SPD Entry SAD Entry
------- --------- ---------
Source wildcard from traffic
Destination wildcard from SPD
Transport ICMPv6 from SPD
ICMP Type Rtr. Renum. from SPD
Action Apply IPsec
SA Spec AH/Transport Mode
or there might be an entry for each management station and/or for
each of the router's unicast addresses and for each of the defined
All-Routers multicast addresses, and a final wildcard entry to
discard all other incoming RR messages.
The SPD and SAD are conceptually per-interface databases. This fact
may be exploited to permit shared management of a border router, for
example, or to discard all Router Renumbering traffic arriving over
tunnels.
8. Implementation and Usage Advice for Reliability
Users of Router Renumbering will want to be sure that every non-
trivial message reaches every intended router. Well-considered
exploitation of Router Renumbering's retransmission and response-
directing features should make that goal achievable with high
confidence even in a minimally reliable network.
In one set of cases, probably the majority, the network management
station will know the complete set of routers under its control.
Commands can be retransmitted, with the "R" (Reply-requested) flag
set in the RR header, until Results have been collected from all
routers. If unicast Security Associations (or the means for creating
them) are available, the management station may switch from multicast
to unicast transmission when the number of routers still unheard-from
is suitably small.
Crawford Standards Track [Page 20]
RFC 2894 Router Renumbering for IPv6 August 2000
To maintain a list of managed routers, the management station can
employ any of several automatic methods which may be more convenient
than manual entry in a large network. Multicast RR "Test" commands
can be sent periodically and the results archived, or the management
station can use SNMP to "peek" into a link-state routing protocol
such as OSPF [OSPFMIB]. (In the case of OSPF, roughly one router per
area would need to be examined to build a complete list of routers.)
In a large dynamic network where the set of managed routers is not
known but reliable execution is desired, a scalable method for
achieving confidence in delivery is described here. Nothing in this
section affects the format or content of Router Renumbering messages,
nor their processing by routers.
A management station implementing these reliability mechanisms MUST
alert an operator who attempts to commence a set of Router
Renumbering Commands when retransmission of a previous set is not yet
completed, but SHOULD allow the operator to override the warning.
8.1. Outline and Definitions
The set of routers being managed with Router Renumbering is
considered as a set of populations, each population having a
characteristic probability of successful round-trip delivery of a
Command/Result pair. The goal is to estimate a lower bound, P, on
the round-trip probability for the whole set. With this estimate and
other data about the responses to retransmissions of the Command, a
confidence level can be computed for hypothesis that all routers have
been heard from.
If the true probability of successful round-trip communication with a
managed router were a constant, p, for all managed routers then an
estimate P of p could be derived from either of these statistics:
The expected ratio of the number of routers first heard from after
transmission (N + 1) to the number first heard from after N is
(1 - p).
When N different routers have been heard from after M
transmissions of a Command, the expected total number of Result
messages received is pNM. If R is the number of Results actually
received, then P = R/MN.
The two methods are not equivalent. The first suffers numerical
problems when the number of routers still to be heard from gets
small, so the P = R/MN estimate should be used.
Crawford Standards Track [Page 21]
RFC 2894 Router Renumbering for IPv6 August 2000
Since the round-trip probability is not expected to be uniform in the
real world, and the less-reliable units are more important to a
lower-bound estimate but more likely to be missed in sampling, the
sample from which P is computed is biased toward the less-reliable
routers. After the Nth transmission interval, N > 2, neglect all
routers heard from in intervals 1 through F from the reliability
estimate, where F is the greatest integer less than one-half of N.
For example, after five intervals, only routers first heard from in
the third through fifth intervals will be counted.
A management station implementing the methods of this section should
allow the user to specify the following parameters, and default them
to the indicated values.
Ct The target delivery confidence, default 0.999.
Pp A presumptive, pessimistic initial estimate of the lower
bound of the round-trip probability, P, to prevent early
termination. (See below.) Default 0.75.
Ti The initial time between Command retransmissions. Default 4
seconds. MaxDelay milliseconds (see section 3.1) must be
added to the retransmission timer. Knowledge of the
routers' processing time for RR Commands may influence the
setting of Ti. Ti+MaxDelay is also the minimum time the
management station must wait for Results after each
transmission before computing a new confidence level. The
phrase "end of the Nth interval" means a time Ti+MaxDelay
after the Nth transmission of a Command.
Tu The upper bound on the period between Command
retransmissions. Default 512 seconds.
The following variables, some a function of the retransmission
counter N, are used in the next section.
T(N) The time between Command transmissions N and N+1 is V*T(N) +
MaxDelay, where V is random and roughly uniform in the range
[0.75, 1.0]. T(1) = Ti and for N > 1, T(N) = min(2*T(N-1),
Tu).
M(N) The cumulative number of distinct routers from which replies
have been received to any of the first N transmissions of
the Command.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -