📄 rfc2894.txt
字号:
Network Working Group M. Crawford
Request for Comments: 2894 Fermilab
Category: Standards Track August 2000
Router Renumbering for IPv6
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2000). All Rights Reserved.
IESG Note:
This document defines mechanisms for informing a set of routers of
renumbering operations they are to perform, including a mode of
operation in environments in which the exact number of routers is
unknown. Reliably informing all routers when the actual number of
routers is unknown is a difficult problem. Implementation and
operational experience will be needed to fully understand the
applicabilty and scalability aspects of the mechanisms defined in
this document when the number of routers is unknown.
Abstract
IPv6 Neighbor Discovery and Address Autoconfiguration conveniently
make initial assignments of address prefixes to hosts. Aside from
the problem of connection survival across a renumbering event, these
two mechanisms also simplify the reconfiguration of hosts when the
set of valid prefixes changes.
This document defines a mechanism called Router Renumbering ("RR")
which allows address prefixes on routers to be configured and
reconfigured almost as easily as the combination of Neighbor
Discovery and Address Autoconfiguration works for hosts. It provides
a means for a network manager to make updates to the prefixes used by
and advertised by IPv6 routers throughout a site.
Crawford Standards Track [Page 1]
RFC 2894 Router Renumbering for IPv6 August 2000
Table of Contents
1. Functional Overview ....................................... 2
2. Definitions ............................................... 4
2.1. Terminology ......................................... 4
2.2. Requirements ........................................ 5
3. Message Format ............................................ 5
3.1. Router Renumbering Header ........................... 7
3.2. Message Body -- Command Message ..................... 9
3.2.1. Prefix Control Operation ...................... 9
3.2.1.1. Match-Prefix Part ....................... 9
3.2.1.2. Use-Prefix Part ......................... 11
3.3. Message Body -- Result Message ...................... 12
4. Message Processing ........................................ 14
4.1. Header Check ........................................ 14
4.2. Bounds Check ........................................ 15
4.3. Execution ........................................... 16
4.4. Summary of Effects .................................. 17
5. Sequence Number Reset ..................................... 18
6. IANA Considerations ....................................... 19
7. Security Considerations ................................... 19
7.1. Security Policy and Association Database Entries .... 19
8. Implementation and Usage Advice for Reliability ........... 20
8.1. Outline and Definitions ............................. 21
8.2. Computations ........................................ 23
8.3. Additional Assurance Methods ........................ 24
9. Usage Examples ............................................ 25
9.1. Maintaining Global-Scope Prefixes ................... 25
9.2. Renumbering a Subnet ................................ 26
10. Acknowledgments .......................................... 27
11. References ............................................... 28
12. Author's Address ......................................... 29
Appendix -- Derivation of Reliability Estimates ............... 30
Full Copyright Statement ...................................... 32
1. Functional Overview
Router Renumbering Command packets contain a sequence of Prefix
Control Operations (PCOs). Each PCO specifies an operation, a
Match-Prefix, and zero or more Use-Prefixes. A router processes each
PCO in sequence, checking each of its interfaces for an address or
prefix which matches the Match-Prefix. For every interface on which
a match is found, the operation is applied. The operation is one of
ADD, CHANGE, or SET-GLOBAL to instruct the router to respectively add
the Use-Prefixes to the set of configured prefixes, remove the prefix
which matched the Match-Prefix and replace it with the Use-Prefixes,
Crawford Standards Track [Page 2]
RFC 2894 Router Renumbering for IPv6 August 2000
or replace all global-scope prefixes with the Use-Prefixes. If the
set of Use-Prefixes in the PCO is empty, the ADD operation does
nothing and the other two reduce to deletions.
Additional information for each Use-Prefix is included in the Prefix
Control Operation: the valid and preferred lifetimes to be included
in Router Advertisement Prefix Information Options [ND], and either
the L and A flags for the same option, or an indication that they are
to be copied from the prefix that matched the Match-Prefix.
It is possible to instruct routers to create new prefixes by
combining the Use-Prefixes in a PCO with some portion of the existing
prefix which matched the Match-Prefix. This simplifies certain
operations which are expected to be among the most common. For every
Use-Prefix, the PCO specifies a number of bits which should be copied
from the existing address or prefix which matched the Match-Prefix
and appended to the use-prefix prior to configuring the new prefix on
the interface. The copied bits are zero or more bits from the
positions immediately after the length of the Use- Prefix. If
subnetting information is in the same portion of the old and new
prefixes, this synthesis allows a single Prefix Control Operation to
define a new global prefix on every router in a site, while
preserving the subnetting structure.
Because of the power of the Router Renumbering mechanism, each RR
message includes a sequence number to guard against replays, and is
required to be authenticated and integrity-checked. Each single
Prefix Control Operation is idempotent and so could be retransmitted
for improved reliability, as long as the sequence number is current,
without concern about multiple processing. However, non-idempotent
combinations of PCOs can easily be constructed and messages
containing such combinations could not be safely reprocessed.
Therefore, all routers are required to guard against processing an RR
message more than once. To allow reliable verification that Commands
have been received and processed by routers, a mechanism for
duplicate-command notification to the management station is included.
Possibly a network manager will want to perform more renumbering, or
exercise more detailed control, than can be expressed in a single
Router Renumbering packet on the available media. The RR mechanism
is most powerful when RR packets are multicast, so IP fragmentation
is undesirable. For these reasons, each RR packet contains a
"Segment Number". All RR packets which have a Sequence Number
greater than or equal to the highest value seen are valid and must be
processed. However, a router must keep track of the Segment Numbers
of RR messages already processed and avoid reprocessing a message
Crawford Standards Track [Page 3]
RFC 2894 Router Renumbering for IPv6 August 2000
whose Sequence Number and Segment Number match a previously processed
message. (This list of processed segment numbers is reset when a new
highest Sequence Number is seen.)
The Segment Number does not impose an ordering on packet processing.
If a specific sequence of operations is desired, it may be achieved
by ordering the PCOs in a single RR Command message or through the
Sequence Number field.
There is a "Test" flag which indicates that all routers should
simulate processing of the RR message and not perform any actual
reconfiguration. A separate "Report" flag instructs routers to send
a Router Renumbering Result message back to the source of the RR
Command message indicating the actual or simulated result of the
operations in the RR Command message.
The effect or simulated effect of an RR Command message may also be
reported to network management by means outside the scope of this
document, regardless of the value of the "Report" flag.
2. Definitions
2.1. Terminology
Address
This term always refers to a 128-bit IPv6 address [AARCH]. When
referring to bits within an address, they are numbered from 0 to
127, with bit 0 being the first bit of the Format Prefix.
Prefix
A prefix can be understood as an address plus a length, the latter
being an integer in the range 0 to 128 indicating how many leading
bits are significant. When referring to bits within a prefix,
they are numbered in the same way as the bits of an address. For
example, the significant bits of a prefix whose length is L are
the bits numbered 0 through L-1, inclusive.
Match
An address A "matches" a prefix P whose length is L if the first L
bits of A are identical with the first L bits of P. (Every
address matches a prefix of length 0.) A prefix P1 with length L1
matches a prefix P2 of length L2 if L1 >= L2 and the first L2 bits
of P1 and P2 are identical.
Crawford Standards Track [Page 4]
RFC 2894 Router Renumbering for IPv6 August 2000
Prefix Control Operation
This is the smallest individual unit of Router Renumbering
operation. A Router Renumbering Command packet includes zero or
more of these, each comprising one matching condition, called a
Match-Prefix Part, and zero or more substitution specifications,
called Use-Prefix Parts.
Match-Prefix
This is a Prefix against which a router compares the addresses and
prefixes configured on its interfaces.
Use-Prefix
The prefix and associated information which is to be configured on
a router interface when certain conditions are met.
Matched Prefix
The existing prefix or address which matched a Match-Prefix.
New Prefix
A prefix constructed from a Use-Prefix, possibly including some of
the Matched Prefix.
Recorded Sequence Number
The highest sequence number found in a valid message MUST be
recorded in non-volatile storage.
Note that "matches" is a transitive relation but not symmetric.
If two prefixes match each other, they are identical.
2.2. Requirements
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [KWORD].
3. Message Format
There are two types of Router Renumbering messages: Commands, which
are sent to routers, and Results, which are sent by routers. A third
message type is used to synchronize a reset of the Recorded Sequence
Number with the cancellation of cryptographic keys. The three types
of messages are distinguished the ICMPv6 "Code" field and differ in
the contents of the "Message Body" field.
Crawford Standards Track [Page 5]
RFC 2894 Router Renumbering for IPv6 August 2000
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
/ IPv6 header, extension headers /
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
/ ICMPv6 & RR Header (16 octets) /
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
/ RR Message Body /
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Router Renumbering Message Format
Router Renumbering messages are carried in ICMPv6 packets with Type =
138. The RR message comprises an RR Header, containing the ICMPv6
header, the sequence and segment numbers and other information, and
the RR Message Body, of variable length.
All fields marked "reserved" or "res" MUST be set to zero on
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -