📄 rfc2194.txt
字号:
4.5. Connection management
The AimTraveler software supports SLIP and PPP, as well as PAP and
CHAP authentication.
4.6. Authentication
GRIC implements distributed authentication, utilizing the user's e-
mail address as the userID (i.e. "liu@Aimnet.com") presented to the
remote NAS device.
After the initial PPP authentication exchange, the userID, domain,
and pasword information (or in the case of CHAP, the challenge and
the response) are then passed by the NAS to the AimTraveler
Authentication Server which supports both TACACS+ and RADIUS.
If the authentication request comes from a regular customer login,
normal user id and password authentication is performed. If the user
requesting authentication is a "roamer," (has a userID with an @ and
domain name), the authentication server sends an query to the closest
routing server. When AimTraveler Routing Server receives the
authentication request, it first authenticates the AAS sending the
request, and if this is successful, it checks its authentication
server table. If it is able to match the domain of the user to that
of a "Home ISP", then the Home ISP authentication server's routing
information are sent back to the local ISP's authentication server.
Based on the information received from the routing server, the AAS
makes an authentication request to the user's Home ISP AAS for user
id and password verification.
If the user is a valid user, the Home ISP authentication server sends
a "permission granted" message back to the Local ISP authentication
server. The Local ISP authentication server then requests the NAS to
grant the user a dynamic IP address from its address pool. If the
Aboba, et. al. Informational [Page 6]
RFC 2194 Review of Roaming Implementations September 1997
username or password is incorrect, the Home ISP AAS will send a
rejection message to the Local ISP AAS, and the user will be dropped
by the NAS.
If multiple routing servers are installed, and the query to the first
routing server does not result in a match, the query is forwarded to
the next routing server. The server queries are cached on the routing
servers, improving speed for repeated queries. The cache is sustained
until a routing server table entry is updated or deleted. Updating
or deleting results in a message to all neighbor routing servers to
delete their caches.
The local authentication server also receives the accounting data
from the NAS. If the data is for a regular customer login, the data
is written to the Local ISP AAS log file. If the data is for a
"roamer," the data is written to three places: the Local ISP AAS log
file, the Home ISP AAS log file, and the ARS log file.
If the local ISP authentication server has caching turned on, then it
will cache information on Home ISP authentication server
configurations sent by the routing server. This means that if the
same domain is queried again, the local authentication server does
not need to query the routing server again. The local cache is
cleared when the local authentication server receives an update
message from the routing server or system manager.
4.7. NAS Configuration/Authorization
AimTraveler is comprised of two components, a Client(AAS) and a
Server(ARS).
The AimTraveler Client acts as the PPP dial-up authentication server.
When it detects an '@' sign in the userID field, it queries the
AimTraverler Server for routing information, then forwards the
authentication request to user's home authentication server. The
AimTraveler Server, a centralized routing server, contains the
authorized ISP's domain name, authentication servers and other
information.
The AimTraveler currently supports RADIUS and TACACS+, and could be
extended to support other authentication protocols. It also receives
all the accounting records, which are subsequently used as input data
for billing.
Since ISPs' NAS devices may be configured differently, the attributes
returned by the home ISP AAS are discarded.
Aboba, et. al. Informational [Page 7]
RFC 2194 Review of Roaming Implementations September 1997
4.8. Address assignment and routing
All addresses in GRIC are assigned dynamically from within the
address pool of the local ISP. Static addresses and routed LAN
connections will be considered in the future, when GRIC offers
corporate roaming service, with the implementation of tunneling
protocols
4.9. Security
The user's password is hashed with MD5 before being sent from the
Local ISP AAS to the Home ISP AAS. An encryption key is shared
between the AAS and ARS. The current version of AimTraveler AAS does
not support token cards or tunneling protocols.
4.10. Accounting
The AimTraveler Authentication Server (AAS) software can act as
either a RADIUS or TACACS+ accounting server. When accounting
information is received from the NAS, the local AimTraveler
Authentication Server (AAS) sends accounting data (user name, domain
name, login time) to both the Central Accounting Server (part of the
ARS) and the user's Home ISP AimTraveler authentication server. In
the case of GRIC, the Central Accounting Server is run by AimQuest.
The data sent to the central accounting server and home ISP are
identical except for the form of user id and time stamp. For a
traveler whose home ISP is in the US, but who is traveling in Japan,
the Local (Japanese) ISP AimTraveler authentication server will
receive an accounting record timestamped with Japan time while the
Home (US) ISP AimTraveler authentication server will receive an
accounting record timestamped with the appropriate US timezone.
The accounting data includes 2 new attributes for settlement
reporting:
Attribute Number Type
--------- ------ ----
Roaming-Server-ID 101 string
Isp-ID 102 string
The Roaming-Server-ID attribute identifies the AAS sending the
authentication request. The Isp-ID attribute identifies the local
ISP. Using this information the home ISP can track the roaming
activities of its users (where their users are logging in).
Aboba, et. al. Informational [Page 8]
RFC 2194 Review of Roaming Implementations September 1997
The AimTraveler Server running at AimQuest keeps a record of all
roaming transactions, which are used as input to the settlement and
billing process. At the end of each month, AimQuest provides a
roaming transaction summary to GRIC members using AIMS. The AIMS
software is configurable so that it takes into account the settlement
rules agreed to by GRIC members.
5. i-Pass implementation
5.1. Overview
i-Pass Alliance Inc., based in Mountain View, California, has
developed and operates a commercial authentication and settlement
clearinghouse service which provides global roaming between Internet
service providers. The service is fully operational.
i-Pass Alliance Inc. has additional offices in Toronto, Singapore,
and London. More information on i-Pass can be obtained from
http://www.ipass.com.
The i-Pass network consists of a number of servers that provide
real-time authentication services to partner ISPs. Authentication
requests and accounting records for roaming users are encrypted and
sent to an i-Pass serverwhere they are logged, and then forwarded to
a home ISP for authentication and/or logging.
Periodically, i-Pass reconciles all accounting records, generates
billing statements, and acts as a single point for collecting and
remitting payments.
i-Pass provides its service only to ISPs and channel partners. It
does not attempt to establish a business relationship with
individual-user customers of an ISP.
5.2. Access Point Database (APD)
i-Pass maintains a list of roaming access points in an Oracle
database. This list is searchable by geographical region using a Web
browser, and may be downloaded in its entirety using FTP. The
information stored for each access point includes:
Name of service provider
Country
State or Province
City or Region
Telephone number
Technical support phone number
Service types available
Aboba, et. al. Informational [Page 9]
RFC 2194 Review of Roaming Implementations September 1997
Technical information (help file)
Service pricing information
The Access Point Database is maintained by i-Pass staff, based on
input from i-Pass partners.
5.3. Phone number presentation
ni-Pass has developed a Windows application wth a simple point and
click interface called the "i-Pass Dial Wizard", which assists end-
users in selecting and connecting to a local Internet access point.
The Dial Wizard allows users to first select the country in which
they are roaming. A list of states, provinces, or other regions in
the selected country is then presented. Finally a list of access
points within the state or province is presented. The Dial Wizard
displays the city name, modem phone number, and price information for
each access point within the state or region.
When the user selects the desired access point, a Windows 95 "DialUp
Networking" icon is created for that access point. If there is a
login script associated with the access point, the DialUp Scripting
tool is automatically configured. This means that end-users never
have to configure any login scripting requirements.
The Dial Wizard has a built-in phonebook containing all the i-Pass
access points. The phonebook may be automatically refreshed from a
master copy located onISPs web site.
The Dial Wizard is provided free of charge to i-Pass partners. i-
Pass also provides the i-Pass Dial Wizard Customization Kit which
allows ISP partners to generate customized versions of the Dial
Wizard with their own logo, etc.
5.4. Authentication
There are three entities involved in servicing an authentication
request:
Local ISP At the local ISP, the authentication server is modified to
recognize user IDs of the form username@auth_domain as being
remote authentication requests. These requests are forwarded
to an i-Pass server.
Aboba, et. al. Informational [Page 10]
RFC 2194 Review of Roaming Implementations September 1997
i-Pass Server
The i-Pass server receives the authentication request, logs
it, and forwards it to the home ISP identified by the
auth_domain portion of the user ID.
Home ISP The home ISP receives the authentication request, performs
authentication using its normal authentication method, and
returns a YES/NO response to the i-Pass server, which in turn
forwards the reply to the originating ISP.
i-Pass provides software components which run on the authentication
servers of the local and home ISPs. Each member ISP must integrate
these components with the native authentication method being used by
the ISP. To simplify this task, i-Pass has developed "drop-in"
interfaces for the most commonly used authentication methods. At the
date of writing, the following interfaces are supported:
Livingston RADIUS
Ascend RADIUS
Merit RADIUS
TACACS+
Xylogics erpcd (Versions 10 and 11)
A generic interface is also provided which authenticates based on the
standard UNIX password file. This is intended as a starting point
for ISPs using authentication methods other than those listed above.
The software integration effort for a typical ISP is on the order of
2-5 man-days including testing. Platforms currently supported
include:
Solaris 2.5 (Sparc).LI
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -