📄 rfc1746.txt
字号:
Internetworking, however, goes beyond proprietary systems by joining
a vast number of distinct networks into one large network, the
Internet. As individual schools and bulletin boards are connected to
the Internet, the number of people and services within easy reach
increases exponentially. By one estimate, there are currently 19
million users of the Internet, with an annual growth rate approaching
80 percent. Furthermore, some of the Internet's most powerful
communication tools are specifically designed so that any of these
millions of people could join any conversation. The network's true
power comes from the synergy of many dispersed minds working together
to solve problems and discuss issues, and there is little in the way
of hierarchy or control of the discourse.
The schools' shift to internetworking systems involves critical
technological, as well as pedagogical, issues. It requires a change
in the school computing paradigm from centralized computing to
distributed client-server systems, thus bringing about an
administrative change in the nature of school computing. Many schools
that currently have some kind of network access provide accounts only
to teachers or administrators. Internetworking is fundamentally
different--giving accounts, access, and therefore control directly to
students.
Manning & Perkins [Page 5]
RFC 1746 Ways to Define User Expectations December 1994
There are numerous arguments for the pedagogical benefits of school
internetworking. But what of the risks? What safety, liability, and,
above all, educational concerns must be addressed before schools are
ready to tap into the Internet? This policy is not intended as a
document that sets limitations or restrictions. Rather, it is
designed to facilitate and set guidelines for exploring and using the
Internet as a tool for learning. The policy was written with the
purpose and goals of the Internet as a background: support for open
research and education in and among research and instructional
institutions. The context for the policy was provided by the specific
needs of a growing community of learners composed of students,
teachers, scientists, and researchers. The networked environment must
support collaboration and cooperation. Proper frameworks to support
network navigation and information searching must be established. And
because networks will continue to be a scarce educational resource
for the foreseeable future, the policy also provides guidelines for
maximizing the educational cost-benefit ratio for teachers and
students.
Testbed for Change--The CoVis Project
Our framework for considering internetworking issues is a project
currently being conducted at the School of Education and Social
Policy at Northwestern University. The Learning Through Collaborative
Visualization Project, CoVis, is designed to reconceptualize and
reconfigure high school science education. CoVis is a networking
testbed funded by the National Science Foundation (NSF). Its goal is
to enable project-based approaches to science by using low- and
medium-bandwidth networks to put students in direct contact with
practicing scientists and scientific tools. In CoVis, we are working
with the types of network connections we believe will be common in
schools in the near future.
In the first phase of our project we are working with two Chicago-
area schools, Evanston Township High School in Evanston and New Trier
High School in Winnetka. CoVis is deployed in 12 classes at the two
high schools, involving three teachers at each school. Approximately
300 students are involved in the project: 100 freshmen, 100
sophomores and juniors, and 100 seniors, all enrolled in either earth
science or environmental science classes. Each classroom contains six
Macintosh Quadra computers with audio/video conferencing units linked
to an internal ethernet, which is linked to Northwestern's ethernet
by a primary-rate Integrated Services Digital Network bridge for
telecommunications using the public-switched network. Additional
computers are available for Internet use in computer labs at each
school.
Manning & Perkins [Page 6]
RFC 1746 Ways to Define User Expectations December 1994
The CoVis Network Community consists of students and teachers in
CoVis classes, scientists who wish to collaborate on CoVis student
projects, the researchers conducting the CoVis project, and other
interested parties who are granted special accounts. In the CoVis
classroom, each student is given an account that makes him or her a
"full" member of the Internet community. This means two things: Each
student has access to all Internet services with minimal mediation by
teachers or other adults, and anybody with an Internet account can
contact the students directly, again without mediation.
In addition to the standard Internet resources, which include
electronic mail, listservs, Usenet news discussion groups, Telnet,
gopher, and file transfer, CoVis makes it possible for students to
communicate with peers and scientists via video and audio conference
tools and remote screen-sharing technology for synchronous
collaborative work. Therefore, the CoVis Network Use Policy goes
beyond the needs of the typical low-bandwidth internetworked school.
As an NSF testbed, CoVis has the job of developing new frameworks for
the use of internetworking. In seeking to understand problematic
issues of networking, we turn both to other projects--Bolt Beranek
and Newman's work with the Ralph Bunche computer-minischool in New
York; AT&T's Learning Circles; and TERC's LabNet project--and to
analogous situations extant in schools. Our attention thus is placed
on the development of a policy to establish ground rules for the
students who will be introduced to the Internet.
The Need for a Proactive Policy
Exciting or revolutionary educational programs too often are
derailed. In the 1970s, Jerome Bruner's curriculum Man: A Course of
Study (MACOS) was at the center of a political and ideological
firestorm that prevented its implementation in many schools. The
experience of the MACOS developers taught us that it makes sense to
spend time in the initial stages of a project trying to determine
what challenges might arise to an educational innovation in order to
avoid, preempt, or co-opt them.
In March 1993, the Communications Policy Forum, a nonpartisan group
of telecommunications stakeholders convened by the Electronic
Frontier Foundation, met on the issues of Internet services for the
K-12 educational community. The forum concluded that services should
be provided only to schools that would indemnify the service
providers. It also recommended that a warning statement be developed
to advise schools of the presence of materials on the Internet that
may be deemed inappropriate for minors.
Manning & Perkins [Page 7]
RFC 1746 Ways to Define User Expectations December 1994
We believe that it is not enough to devise a policy designed to
protect schools and service providers, although our policy also
speaks to those roles. In this policy designed to guide students
through some of the social complexity presented by the Internet, we
created guidelines to alert novice users of established expectations
and practices. Because the Internet is somewhat anarchic in its daily
commerce, it is necessary to define a safe local space, or identity,
for a school network where students can feel like members of a
supportive community. The goal of establishing the boundaries of our
own community forms the framework of our policy.
Issues and Analogies
The kinds of issues posed by internetworking are not new. Similar
issues have been debated by schools many times before, from creation
science to dress codes. These concerns resurface in the availability
of networked material that some parents, teachers, or students might
find objectionable, pornographic, or otherwise inappropriate.
Although the actual percentage of materials in this category is
small, their mere presence draws plenty of media attention. Consider
this lead-in to a story about graphic material that can be retrieved
through the Internet, published in the Houston Chronicle in 1990:
"Westbury High School student Jeff Noxon's homework was rudely
interrupted recently when he stumbled across the world's most
sophisticated pornography ring....It was supported by taxes and
brought into town by the brightest lights of higher education."
While some are shocked, an alternative interpretation might point out
that in using a valuable resource provided by the local university, a
high school student chose to view material that many (including
regular Internet users) find objectionable. Educators must understand
that, as a byproduct of introducing internetworking, schools likely
will have to justify student use of network resources to a public
that does not understand the medium or its utility to education. By
seeking out analogous situations and applying them to the development
of our network use policy, we believe it is possible to establish
frameworks for responding to these challenges. We found several
significant analogies.
* American Library Association (ALA). In considering information
access issues, the most striking and informative analogy is to a
remarkable set of documents built around the ALA's Library Bill of
Rights of 1980. It is not farfetched to consider the Internet, at
least in part, as a vast digital library. After all, the electronic
database and information search tools it employs are rapidly becoming
part of new school media centers, and many public and school
libraries are beginning to offer some type of network access to their
Manning & Perkins [Page 8]
RFC 1746 Ways to Define User Expectations December 1994
patrons.
The ALA documents state, "Attempts to restrict access to library
materials violate the basic tenets of the Library Bill of Rights."
However, they add, what goes into the library collection should be
chosen thoughtfully and with an eye toward instructional goals.
School librarians are bound to devise collections that "are
consistent with the philosophy, goals, and objectives of the school
district," and they must "resist efforts by individuals to define
what is appropriate for all students or teachers to read, view, or
hear." Similarly, tools used to access the network must be designed
to direct access to materials that support curricular concerns. Thus,
the interface to the network embodies the notion of a library
collection. In a school network policy, the "intent of the
collection" should be clearly reflected in a statement of purpose for
the network.
Directly addressing the information access needs of children, the ALA
opposes attempts to limit access based on the age of a library user.
"Librarians and governing bodies should maintain that parents--and
only parents--have the right and the responsibility to restrict the
access of their children--and only their children--to library
resources," it states.
While we in the CoVis Project have some ability technologically to
restrict what is in our Internet "collection," it is virtually
impossible to prevent students from accessing materials whose
presence we never anticipated while preserving the students' status
as full members of the Internet community. In this way, the Internet
is fundamentally different from a relatively static library
collection. Following the lead of the ALA, however, we believe that
the precise limits placed upon students' access cannot be formalized
by the school policy. Instead, it is the students' responsibility to
adhere to the standards set by their parents.
* American Society for Information Science (ASIS). The code of ethics
of ASIS provides another informative analogy, this one speaking to
issues of professionals' responsibilities to both individuals and
society. Where individuals are concerned, information professionals-
-a designation we believe should be applied to teachers--must strive
both to "protect each information user's and provider's right to
privacy and confidentiality" and "respect an information provider's
proprietary rights." With respect to society, information
professionals should "serve the legitimate information needs of a
large and complex society while at the same time being mindful of
[the] individual's rights." They also should "resist efforts to
censor publications."
Manning & Perkins [Page 9]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -