📄 rfc1457.txt
字号:
such labels because the OSI Security Architecture [4] does not
allocate any security services to the Session Layer, and the Internet
protocol suite does not have a Session Layer.
Implicit security labels are also possible in the Session Layer.
These implicit labels could be either connectionless or connection-
oriented. Again, the OSI Security Architecture makes this layer an
unlikely choice for security labeling.
Security labels in the Session Layer may be used to meet the
requirements of end systems, but the Session Layer is too high in the
protocol stack to support trusted demultiplexing. The Session Layer
cannot be used to meet the requirements of intermediate systems
because intermediate systems, by definition, do not process protocols
above the Network Layer. Security labels in the Session Layer do not
offer any advantages to security labels in the Transport Layer.
5.6 Layer 6, The Presentation Layer
Explicit security labels are possible in the Presentation Layer. The
presentation syntax may include a security label. This approach
naturally performs translation to the local label format and supports
both connectionless and connection-oriented security labeling.
Implicit security labels are also possible in the Presentation Layer.
Such labels could be either connectionless or connection-oriented.
Security labels in the Presentation Layer may be used to meet the
requirements of end systems, but the Presentation Layer is too high
in the protocol stack to support trusted demultiplexing. The
Presentation Layer cannot be used to meet the requirements of
intermediate systems because intermediate systems, by definition, do
Housley [Page 10]
RFC 1457 Security Label Framework for the Internet May 1993
not process protocols above the Network Layer. To date, no
Presentation Layer protocols have been standardized which include
security labels.
5.7 Layer 7, The Application Layer
Explicit security labels are possible in the Application Layer. The
CCITT X.400 message handling system includes security labels in
message envelopes [18]. Other Application Layer protocols will
probably include security labels in the future. These labels could
be either connectionless or connection-oriented. Should security
labels be incorporated into transaction processing protocols and
message handling protocols, these will most likely be connectionless
security labels; should security labels be incorporated into other
application protocols, these will most likely be connection-oriented
security labels. Application layer protocols are unique in that they
can include security label information which is specific to a
particular application without burdening other applications with the
syntax or semantics of that security label.
Store and forward application protocols, like electronic messaging
and directory protocols, deserve special attention. In terms of the
OSI Reference Model, they are end system protocols, but multiple end
systems cooperate to provide the communications service. End systems
may use security labels to determine which end system should be next
in a chain of store and forward interactions; this use of security
labels is very similar to the label-based routing/relay decisions
made by routers except that the security labels are carried in an
Application Layer protocol. Also, Application Layer protocols must
be used to carry security labels in a store and forward application
when sensitivity labels must be concealed from some end systems in
the chain or when some end systems in the chain are untrustworthy.
Implicit security labels are also possible in the Application Layer.
These labels could be either connectionless or connection-oriented.
Application title or well know port number might be used to determine
the implicit label.
Security labels in the Application Layer may be used to meet the
requirements of end systems, but the Application Layer is too high in
the protocol stack to support trusted demultiplexing. The
Application Layer cannot be used to meet the requirements of
intermediate systems because intermediate systems, by definition, do
not process protocols above the Network Layer.
Housley [Page 11]
RFC 1457 Security Label Framework for the Internet May 1993
6.0 Summary
Very few hard rules exist for security labels. Internet architects
and protocol designers face many tradeoffs when making security label
placement decisions. However, a few guidelines can be derived from
the preceding discussion:
First, security label-based routing decisions are best supported by
explicit security labels in the Data Link Layer and the Network
Layer. When bridges are making the routing decisions, the Data Link
Layer should carry the explicit security label; when routers are
making the routing decisions, the Network Layer should carry the
explicit security label.
Second, when security labels are specific to a particular application
it is wise to define them in the application protocol, so that these
security labels will not burden other applications on the network.
Third, when trusted demultiplexing is a concern, the Network Layer
(preferably the SNICP) or Transport Layer should be used to carry the
explicit security label. The SNICP or transport protocol are
especially attractive when combined with a cryptographic protocol
that binds the security label to the data and protects the both
against undetected modification.
Fourth, to avoid explicit security label translation, a common
explicit security label format should be defined for the Internet.
Registration of security label semantics should be used so that many
security policies can be supported by the common explicit security
label syntax.
References
[1] ISO Open Systems Interconnection - Basic Reference Model (ISO
7498). International Organization for Standardization, 1981.
[2] Dictionary of Military and Associated Terms (JCS Pub 1). Joint
Chiefs of Staff. 1 April 1984.
[3] Security Requirements for Automatic Data Processing (ADP) Systems
(DODD 5200.28). Department of Defense. 21 March 1988.
[4] Information Processing Systems - Open Systems Interconnection
Reference Model - Security Architecture (ISO 7498-2).
Organization for Standardization, 1988.
[5] Biba, K. J. "Integrity Considerations for Secure Computer
Systems", MTR-3153, The Mitre Corporation, April 1977.
Housley [Page 12]
RFC 1457 Security Label Framework for the Internet May 1993
[6] Bell, D. E.; LaPadula, L. J. "Secure Computer System: Unified
Exposition and Multics Interpretation", MTR-2997, The MITRE
Corporation, March 1976.
[7] Kent, S. "U.S. Department of Defense Security Options for the
Internet Protocol", RFC 1108, BBN Communications, November 1992.
[8] Trusted Computer System Evaluation Criteria (DoD 5200.28-STD)
National Computer Security Center, 26 December 1985.
[9] Trusted Network Interpretation of the Trusted Computer System
Evaluation Criteria, (NCSC-TG-005, Version-1). National Computer
Security Center, 31 July 1987.
[10] Nazario, Noel (Chairman). "Standard Security Label for GOSIP An
Invitational Workshop", NISTIR 4614, June 1991.
[11] Dinkel, Charles (Editor). "Secure Data Network System (SDNS)
Network, Transport, and Message Security Protocols", NISTIR 90-
4250, February 1990, pp 39-62.
[12] Dinkel, Charles (Editor). "Secure Data Network System (SDNS) Key
Management Documents", NISTIR 90-4262, February 1990.
[13] IEEE Standards for Local Area Networks: Logical Link Control,
IEEE 802.2. The Institute of Electrical and Electronics
Engineers, Inc, 1984.
[14] IEEE Standards for Local Area Networks: Carrier Sense Multiple
Access with Collision Detection (CSMA/CD) Access Method and
Physical Layer Specification, IEEE 802.3. The Institute of
Electrical and Electronics Engineers, Inc, 1985.
[15] Recommendation X.25, Interface Between Data Terminal Equipment
(DTE) and Data Circuit Terminating Equipment (DCE) for Terminals
Operating in the Packet Mode on Public Data Networks.
Consultative Committee, International Telephone and Telegraph
(CCITT), 1984.
[16] Information Processing Systems - Open Systems Interconnection -
Connection oriented transport protocol specification (ISO 8073).
Organization for Standardization, 1985. [Also ISO 8208]
[17] Information Processing Systems - Open Systems Interconnection -
Protocol for providing the connectionless-mode transport service
(ISO 8602). Organization for Standardization, 1986.
Housley [Page 13]
RFC 1457 Security Label Framework for the Internet May 1993
[18] Recommendation X.411, Message Handling Systems: Message Transfer
System: Abstract Service Definition and Procedures. Consultative
Committee, International Telephone and Telegraph (CCITT), 1988.
[Also ISO 8883-1]
Security Considerations
This entire memo is devoted to a discussion of a Framework for
labeling information for security purposes in network protocols.
Author's Address
Russell Housley
Xerox Special Information Systems
7900 Westpark Drive
McLean, Virginia 22102
Phone: 703-790-3767
EMail: Housley.McLean_CSD@Xerox.COM
Housley [Page 14]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -