📄 rfc1113.txt
字号:
set of measures to be considered in this RFC:
1. Measures will be restricted to implementation at endpoints
and will be amenable to integration at the user agent (UA)
level or above, rather than necessitating integration into
the message transport system (e.g., SMTP servers).
Linn [Page 5]
RFC 1113 Mail Privacy: Procedures August 1989
2. The set of supported measures enhances rather than restricts
user capabilities. Trusted implementations, incorporating
integrity features protecting software from subversion by
local users, cannot be assumed in general. In the absence
of such features, it appears more feasible to provide
facilities which enhance user services (e.g., by protecting
and authenticating inter-user traffic) than to enforce
restrictions (e.g., inter-user access control) on user
actions.
3. The set of supported measures focuses on a set of functional
capabilities selected to provide significant and tangible
benefits to a broad user community. By concentrating on the
most critical set of services, we aim to maximize the added
privacy value that can be provided with a modest level of
implementation effort.
As a result of these restrictions, the following facilities can be
provided:
1. disclosure protection,
2. sender authenticity,
3. message integrity measures, and
4. (if asymmetric key management is used) non-repudiation of
origin,
but the following privacy-relevant concerns are not addressed:
1. access control,
2. traffic flow confidentiality,
3. address list accuracy,
4. routing control,
5. issues relating to the casual serial reuse of PCs by
multiple users,
6. assurance of message receipt and non-deniability of receipt,
7. automatic association of acknowledgments with the messages
to which they refer, and
8. message duplicate detection, replay prevention, or other
Linn [Page 6]
RFC 1113 Mail Privacy: Procedures August 1989
stream-oriented services.
A message's sender will determine whether privacy enhancements are to
be performed on a particular message. Therefore, a sender must be
able to determine whether particular recipients are equipped to
process privacy-enhanced mail. In a general architecture, these
mechanisms will be based on server queries; thus, the query function
could be integrated into a UA to avoid imposing burdens or
inconvenience on electronic mail users.
4. Processing of Messages
4.1 Message Processing Overview
This subsection provides a high-level overview of the components and
processing steps involved in electronic mail privacy enhancement
processing. Subsequent subsections will define the procedures in
more detail.
4.1.1 Types of Keys
A two-level keying hierarchy is used to support privacy-enhanced
message transmission:
1. Data Encrypting Keys (DEKs) are used for encryption of
message text and (with certain choices among a set of
alternative algorithms) for computation of message integrity
check (MIC) quantities. DEKs are generated individually for
each transmitted message; no predistribution of DEKs is
needed to support privacy-enhanced message transmission.
2. Interchange Keys (IKs) are used to encrypt DEKs for
transmission within messages. Ordinarily, the same IK will
be used for all messages sent from a given originator to a
given recipient over a period of time. Each transmitted
message includes a representation of the DEK(s) used for
message encryption and/or MIC computation, encrypted under
an individual IK per named recipient. The representation is
associated with "X-Sender-ID:" and "X-Recipient-ID:" fields,
which allow each individual recipient to identify the IK
used to encrypt DEKs and/or MICs for that recipient's use.
Given an appropriate IK, a recipient can decrypt the
corresponding transmitted DEK representation, yielding the
DEK required for message text decryption and/or MIC
verification. The definition of an IK differs depending on
whether symmetric or asymmetric cryptography is used for DEK
encryption:
Linn [Page 7]
RFC 1113 Mail Privacy: Procedures August 1989
2a. When symmetric cryptography is used for DEK
encryption, an IK is a single symmetric key shared
between an originator and a recipient. In this
case, the same IK is used to encrypt MICs as well
as DEKs for transmission. Version/expiration
information and IA identification associated with
the originator and with the recipient must be
concatenated in order to fully qualify a symmetric
IK.
2b. When asymmetric cryptography is used, the IK
component used for DEK encryption is the public
component of the recipient. The IK component used
for MIC encryption is the private component of the
originator, and therefore only one encrypted MIC
representation need be included per message, rather than
one per recipient. Each of these IK
components can be fully qualified in an
"X-Recipient-ID:" or "X-Sender-ID:" field,
respectively.
4.1.2 Processing Procedures
When privacy enhancement processing is to be performed on an outgoing
message, a DEK is generated [1] for use in message encryption and (if
a chosen MIC algorithm requires a key) a variant of the DEK is formed
for use in MIC computation. DEK generation can be omitted for the
case of a message in which all contents are excluded from encryption,
unless a chosen MIC computation algorithm requires a DEK.
An "X-Sender-ID:" field is included in the header to provide one
identification component for the IK(s) used for message processing.
IK components are selected for each individually named recipient; a
corresponding "X-Recipient-ID:" field, interpreted in the context of
a prior "X-Sender-ID:" field, serves to identify each IK. Each "X-
Recipient-ID:" field is followed by an "X-Key-Info:" field, which
transfers a DEK encrypted under the IK appropriate for the specified
recipient. When symmetric key management is used for a given
recipient, the "X-Key-Info:" field also transfers the message's
computed MIC, encrypted under the recipient's IK. When asymmetric
key management is used, a prior "X-MIC-Info:" field carries the
message's MIC encrypted under the private component of the sender.
A four-phase transformation procedure is employed in order to
represent encrypted message text in a universally transmissible form
and to enable messages encrypted on one type of host computer to be
decrypted on a different type of host computer. A plaintext message
is accepted in local form, using the host's native character set and
Linn [Page 8]
RFC 1113 Mail Privacy: Procedures August 1989
line representation. The local form is converted to a canonical
message text representation, defined as equivalent to the inter-SMTP
representation of message text. This canonical representation forms
the input to the MIC computation and encryption processes.
For encryption purposes, the canonical representation is padded as
required by the encryption algorithm. The padded canonical
representation is encrypted (except for any regions which are
explicitly excluded from encryption). The encrypted text (along with
the canonical representation of regions which were excluded from
encryption) is encoded into a printable form. The printable form is
composed of a restricted character set which is chosen to be
universally representable across sites, and which will not be
disrupted by processing within and between MTS entities.
The output of the encoding procedure is combined with a set of header
fields carrying cryptographic control information. The result is
passed to the electronic mail system to be encapsulated as the text
portion of a transmitted message.
When a privacy-enhanced message is received, the cryptographic
control fields within its text portion provide the information
required for the authorized recipient to perform MIC verification and
decryption of the received message text. First, the printable
encoding is converted to a bitstring. Encrypted portions of the
transmitted message are decrypted. The MIC is verified. The
canonical representation is converted to the recipient's local form,
which need not be the same as the sender's local form.
4.2 Encryption Algorithms and Modes
For purposes of this RFC, the Block Cipher Algorithm DEA-1, defined
in ANSI X3.92-1981 [2] shall be used for encryption of message text.
The DEA-1 is equivalent to the Data Encryption Standard (DES), as
defined in FIPS PUB 46 [3]. When used for encryption of text, the
DEA-1 shall be used in the Cipher Block Chaining (CBC) mode, as
defined in ISO IS 8372 [4]. The identifier string "DES-CBC", defined
in RFC-1115, signifies this algorithm/mode combination. The CBC mode
definition in IS 8372 is equivalent to that provided in FIPS PUB 81
[5] and in ANSI X3.106-1983 [16]. Use of other algorithms and/or
modes for message text processing will require case-by-case study to
determine applicability and constraints. Additional algorithms and
modes approved for use in this context will be specified in
successors to RFC-1115.
It is an originator's responsibility to generate a new pseudorandom
initializing vector (IV) for each privacy-enhanced electronic mail
message unless the entirety of the message is excluded from
Linn [Page 9]
RFC 1113 Mail Privacy: Procedures August 1989
encryption. Section 4.3.1 of [17] provides rationale for this
requirement, even in a context where individual DEKs are generated
for individual messages. The IV will be transmitted with the
message.
Certain operations require that one key be encrypted under an
interchange key (IK) for purposes of transmission. A header facility
indicates the mode in which the IK is used for encryption. RFC-1115
specifies encryption algorithm/mode identifiers, including DES-ECB,
DES-EDE, and RSA. All implementations using symmetric key management
should support DES-ECB IK use, and all implementations using
asymmetric key management should support RSA IK use.
RFC-1114, released concurrently with this RFC, specifies asymmetric,
certificate-based key management procedures to support the message
processing procedures defined in this document. The message
processing procedures can also be used with symmetric key management,
given prior distribution of suitable symmetric IKs through out-of-
band means. Support for the asymmetric approach defined in RFC-1114
is strongly recommended.
4.3 Privacy Enhancement Message Transformations
4.3.1 Constraints
An electronic mail encryption mechanism must be compatible with the
transparency constraints of its underlying electronic mail
facilities. These constraints are generally established based on
expected user requirements and on the characteristics of anticipated
endpoint and transport facilities. An encryption mechanism must also
be compatible with the local conventions of the computer systems
which it interconnects. In our approach, a canonicalization step is
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -