📄 rfc2353.txt
字号:
a network node has defined a TG to the VRN; however, TRS is capable
of selecting a direct path between two end nodes across a connection
network without a VRN node entry.
*--------------------------------------------------------------------*
| CS TRS DLC DMUX |
*--------------------------------------------------------------------*
. ACTIVATE_PORT(RQ) . create
o--------------------------------------->o----------------->o
. ACTIVATE_PORT(RSP) | .
o<---------------------------------------* .
| TG_UPDATE . . .
*------------------->o . .
. . . .
Figure 8. IP Connection Network Establishment
The TG vectors for IP connection network TGs include the following
information:
o TG number
o VRN CP name
o TG characteristics used during route selection
- Effective capacity
- Cost per connect time
- Cost per byte transmitted
- Security
- Propagation delay
- User defined parameters
o Signaling information
- IP version (indicates the format of the IP header including
the IP address)
- IP address
- Link service access point address (LSAP) used for XID, TEST,
DISC, and DM
2.5.2.2 IP Connection Network Parameters
For a connection network TG, the parameters are determined by CS
using several inputs. Parameters that are particular to the local
port, connection network, or TG are system defined and received in
Dudley Informational [Page 22]
RFC 2353 APPN/HPR in IP Networks May 1998
DEFINE_PORT(RQ), DEFINE_CN(RQ), or DEFINE_CN_TG(RQ). Signaling
information for the destination node including its IP address is
received in the ACTIVATE_ROUTE request from SS.
The following configuration parameters are received in DEFINE_CN(RQ):
o Connection network name (CP name of the VRN)
o Limited resource liveness timer (default is 45 sec.)
o IP precedence (the setting of the 3-bit field within the Type of
Service byte of the IP header for LLC commands such as XID and
for each of the APPN transmission priorities; the defaults are
given in 2.6.1, "IP Prioritization" on page 28; this parameter is
used to override the settings in DEFINE_PORT)
The following configuration parameters are received in
DEFINE_CN_TG(RQ):
o Port name
o Connection network name (CP name of the VRN)
o Connection network TG number (set to a value between 1 and 239)
o TG characteristics (see 2.6.3, "Default TG Characteristics" on
page 30)
o Link service access point address (LSAP) used for XID, TEST,
DISC, and DM (default is X'04')
o Link service access point address (LSAP) used for HPR network
layer packets (default is X'C8')
o Limited resource (default is yes)
o Retry count for LDLC (default is 3; this parameter is used to
override the setting in DEFINE_PORT)
o Retry timer period for LDLC (default is 15 sec.; a smaller value
such as 10 seconds can be used for a campus connection network;
this parameter is used to override the setting in DEFINE_PORT)
o LDLC liveness timer period (default is 10 seconds; this parameter
is used to override the setting in DEFINE_PORT; see 2.3.1, "LDLC
Liveness" on page 7)
Dudley Informational [Page 23]
RFC 2353 APPN/HPR in IP Networks May 1998
o Shareable with other HPR traffic (default is yes for non-RSVP
links)
o Maximum receive BTU size (default is 1461; this parameter is used
to override the value in DEFINE_PORT(RQ).)
o Maximum send BTU size (default is 1461; this parameter is used to
override the value in DEFINE_PORT(RQ).)
The following parameters are received in ACTIVATE_ROUTE for
connection network TGs:
o The TG pair
o The destination IP version (if this version is not supported by
the local node, the ACTIVATE_ROUTE_RSP reports the activation
failure with sense data X'086B46A5'.)
o The destination IP address (in the format specified by the
destination IP version)
o Destination service access point address (DSAP) used for XID,
TEST, DISC, and DM
2.5.2.3 Sharing of TGs
Connection network traffic is multiplexed onto a regular defined IP
TG (usually used for CP-CP session traffic) in order to reduce the
control block storage. No XIDs flow to establish a new TG on the IP
network, and no new LLC is created. When a regular TG is shared,
incoming traffic is demultiplexed using the normal means. If the
regular TG is deactivated, a path switch is required for the HPR
connection network traffic sharing the TG.
Multiplexing is possible if the following conditions hold:
1. Both the regular TG and the connection network TG to the VRN are
defined as shareable between HPR traffic streams.
2. The destination IP address is the same.
3. The regular TG is established first. (Because links established
for connection network traffic do not support CP-CP sessions,
there is little value in allowing a regular TG to share such a
link.)
The destination node is notified via XID when a TG can be shared
between HPR data streams. At either end, upon receiving
Dudley Informational [Page 24]
RFC 2353 APPN/HPR in IP Networks May 1998
ACTIVATE_ROUTE requesting a shared TG for connection network traffic,
CS checks its TGs for one meeting the required specifications before
initiating a new link. First, CS looks for a link established for
the TG pair; if there is no such link, CS determines if there is a
regular TG that can be shared and, if multiple such TGs exist, which
TG to choose. As a result, RTP connections routed over the same TG
pair may actually use different links, and RTP connections routed
over different TG pairs may use the same link.
2.5.2.4 Minimizing RSCV Length
The maximum length of a Route Selection (X'2B') control vector (RSCV)
is 255 bytes. Use of connection networks significantly increases the
size of the RSCV contents required to describe a "hop" across an
SATF. First, because two connection network TGs are used to specify
an SATF hop, two TG Descriptor (X'46') control vectors are required.
Furthermore, inclusion of DLC signaling information within the TG
Descriptor control vectors increases the length of these control
vectors. As a result, the total number of hops that can be specified
in RSCVs traversing connection networks is reduced.
To avoid unnecessarily limiting the number of hops, a primary goal in
designing the formats for IP signaling information is to minimize
their size. Additional techniques are also used to reduce the effect
of the RSCV length limitation.
For an IP connection network, DLC signaling information is required
only for the second TG (i.e., from the VRN to the destination node);
the signaling information for the first TG is locally defined at the
origin node. For this reason, the topology database does not include
DLC signaling information for the entry describing a connection
network TG from a network node to a VRN. The DLC signaling
information is included in the allied entry for the TG in the
opposite direction. This mechanism cannot be used for a connection
network TG between a VRN and an end node. However, a node
implementing IP connection networks does not include IP signaling
information for the first connection network TG when constructing an
RSCV.
In an environment where APPN network nodes are used to route between
legacy LANs and wide-area IP networks, it is recommended that
customers not define connection network TGs between these network
nodes and VRNs representing legacy LANs. Typically, defined links
are required between end nodes on the legacy LANs and such network
nodes which also act as network node servers for the end nodes.
These defined links can be used for user traffic as well as control
traffic. This technique will reduce the number of connection network
hops in RSCVs between end nodes on different legacy LANs.
Dudley Informational [Page 25]
RFC 2353 APPN/HPR in IP Networks May 1998
Lastly, for environments where RSCVs are still not able to include
enough hops, extended border nodes (EBNs) can be used to partition
the network. In this case, the EBNs will also provide piecewise
subnet route calculation and RSCV swapping. Thus, the entire route
does not need to be described in a single RSCV with its length
limitation.
2.5.3 XID Changes
Packets transmitted over IP networks are lost or arrive out of order
more often than packets transmitted over other "link" technologies.
As a result, the following problem with the XID3 negotiation protocol
was exposed:
--------------------------------------------------------------------
*---------------------------------*
|Node A Node B|
*---------------------------------*
o
o
o
XID3 (np, NEG)
o<-------------------------o
|XID3 (np, SEC)
*------------------------->o
XID3 (np, PRI)|
lost<-----------*
time out
XID3 (np, SEC)
o------------------------->o
SETMODE |
o<-------------------------*
fail because never
received XID3 (np, PRI)
Notation: np - negotiation proceeding
NEG - negotiable link station role
SEC - secondary link station role
PRI - primary link station role
--------------------------------------------------------------------
Figure 9. XID3 Protocol Problem
In the above sequence, the XID3(np, PRI), which is a link-level
response to the received XID3(np, SEC), is lost. Node A times out
and resends the XID3(np, SEC) as a link-level command. When Node B
Dudley Informational [Page 26]
RFC 2353 APPN/HPR in IP Networks May 1998
receives this command, it thinks that the XID3(np, PRI) was
successfully received by Node A and that the activation XID exchange
is complete. As a result, Node B sends SETMODE (SNRM, SABME, or
XID_DONE_RQ, depending upon the link type). When Node A receives
SETMODE, it fails the link activation because it has not received an
XID3(np, PRI) from Node B confirming that Node B does indeed agree to
be the primary. Moreover, there are similar problems with incomplete
TG number negotiation.
To solve the problems with incomplete role and TG number negotiation,
two
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -