📄 rfc2415.txt
字号:
16 3 1.4 1.6 1.5 1.7
32 1 0.7 0.9 1.3 0.9
32 2 0.8 1.0 1.3 1.1
32 3 0.7 1.0 1.2 1.0
The above simulations all used http1.0 style web connections, thus, a
natural question is to ask how results are affected by migration to
http1.1. A rough model of this behavior was simulated by using one
connection to send all of the information from both the primary URL
and the three embedded, or in-line, URLs. Since the transfer size is
now made up of four web files, the steep improvement in performance
between an IW of 1 and an IW of two, noted in the previous results,
has been smoothed. Results are shown in Tables 4 & 5 and Figs. 3 & 4.
Occasionally an increase in IW from 3 to 4 decreases the network
power owing to a non-increase or a slight decrease in the throughput.
TCP connections opening up with a higher window size into a very
congested network might experience some packet drops and consequently
a slight decrease in the throughput. This indicates that increase of
the initial window sizes to further higher values (>4) may not always
result in a favorable network performance. This can be seen clearly
in Figure 4 where the network power shows a decrease for the two
highly congested cases.
Poduri & Nichols Informational [Page 6]
RFC 2415 TCP Window Size September 1998
Table 4. Median web page delay for http1.1
#Webs #FTPs IW=1 IW=2 IW=3 IW=4
(s) (% decrease)
----------------------------------------------
8 0 0.47 14.9 19.1 21.3
8 1 0.84 17.9 19.0 25.0
8 2 0.99 11.5 17.3 23.0
8 3 1.04 12.1 20.2 28.3
16 0 0.54 07.4 14.8 20.4
16 1 0.89 14.6 21.3 27.0
16 2 1.02 14.7 19.6 25.5
16 3 1.11 09.0 17.0 18.9
32 0 0.94 16.0 29.8 36.2
32 1 1.23 12.2 28.5 21.1
32 2 1.39 06.5 13.7 12.2
32 3 1.46 04.0 11.0 15.0
Table 5. Network power of file transfers with an increase in the
TCP IW size
#Webs #FTPs IW=1 IW=2 IW=3 IW=4
--------------------------------------------
8 1 4.2 4.2 4.2 3.7
8 2 2.7 2.5 2.6 2.3
8 3 2.1 1.9 2.0 2.0
16 1 1.8 1.8 1.5 1.4
16 2 1.5 1.2 1.1 1.5
16 3 1.0 1.0 1.0 1.0
32 1 0.3 0.3 0.5 0.3
32 2 0.4 0.3 0.4 0.4
32 3 0.4 0.3 0.4 0.5
For further insight, we returned to the http1.0 model and mixed some
web-browsing connections with IWs of one with those using IWs of
three. In this experiment, we first simulated a total of 16 web-
browsing connections, all using IW of one. Then the clients were
split into two groups of 8 each, one of which uses IW=1 and the other
used IW=3.
We repeated the simulations for a total of 32 and 64 web-browsing
clients, splitting those into groups of 16 and 32 respectively. Table
6 shows these results. We report the goodput (in Mbytes), the web
page delays (in milli seconds), the percent utilization of the link
and the percent of packets dropped.
Poduri & Nichols Informational [Page 7]
RFC 2415 TCP Window Size September 1998
Table 6. Results for half-and-half scenario
Median Page Delays and Goodput (MB) | Link Utilization (%) & Drops (%)
#Webs IW=1 | IW=3 | IW=1 | IW=3
G.put dly | G.put dly | L.util Drops| L.util Drops
------------------|-------------------|---------------|---------------
16 35.5 0.64| 36.4 0.54 | 67 0.1 | 69 0.7
8/8 16.9 0.67| 18.9 0.52 | 68 0.5 |
------------------|-------------------|---------------|---------------
32 48.9 0.91| 44.7 0.68 | 92 3.5 | 85 4.3
16/16 22.8 0.94| 22.9 0.71 | 89 4.6 |
------------------|-------------------|---------------|----------------
64 51.9 1.50| 47.6 0.86 | 98 13.0 | 91 8.6
32/32 29.0 1.40| 22.0 1.20 | 98 12.0 |
Unsurprisingly, the non-split experiments are consistent with our
earlier results, clients with IW=3 outperform clients with IW=1. The
results of running the 8/8 and 16/16 splits show that running a
mixture of IW=3 and IW=1 has no negative effect on the IW=1
conversations, while IW=3 conversations maintain their performance.
However, the 32/32 split shows that web-browsing connections with
IW=3 are adversely affected. We believe this is due to the
pathological dynamics of this extremely congested scenario. Since
embedded URLs open their connections simultaneously, very large
number of TCP connections are arriving at the bottleneck link
resulting in multiple packet losses for the IW=3 conversations. The
myriad problems of this simultaneous opening strategy is, of course,
part of the motivation for the development of http1.1.
4. Discussion
The indications from these results are that increasing the initial
window size to 3 packets (or 4380 bytes) helps to improve perceived
performance. Many further variations on these simulation scenarios
are possible and we've made our simulation models and scripts
available in order to facilitate others' experiments.
We also used the RED queue management included with ns-2 to perform
some other simulation studies. We have not reported on those results
here since we don't consider the studies complete. We found that by
adding RED to the bottleneck link, we achieved similar performance
gains (with an IW of 1) to those we found with increased IWs without
RED. Others may wish to investigate this further.
Although the simulation sets were run for a T1 link, several
scenarios with varying levels of congestion and varying number of web
and ftp clients were analyzed. It is reasonable to expect that the
results would scale for links with higher bandwidth. However,
Poduri & Nichols Informational [Page 8]
RFC 2415 TCP Window Size September 1998
interested readers could investigate this aspect further.
We also used the RED queue management included with ns-2 to perform
some other simulation studies. We have not reported on those results
here since we don't consider the studies complete. We found that by
adding RED to the bottleneck link, we achieved similar performance
gains (with an IW of 1) to those we found with increased IWs without
RED. Others may wish to investigate this further.
5. References
[1] B. Mah, "An Empirical Model of HTTP Network Traffic", Proceedings
of INFOCOM '97, Kobe, Japan, April 7-11, 1997.
[2] C.R. Cunha, A. Bestavros, M.E. Crovella, "Characteristics of WWW
Client-based Traces", Boston University Computer Science
Technical Report BU-CS-95-010, July 18, 1995.
[3] K.M. Nichols and M. Laubach, "Tiers of Service for Data Access in
a HFC Architecture", Proceedings of SCTE Convergence Conference,
January, 1997.
[4] K.M. Nichols, "Improving Network Simulation with Feedback",
available from knichols@baynetworks.com
6. Acknowledgements
This work benefited from discussions with and comments from Van
Jacobson.
7. Security Considerations
This document discusses a simulation study of the effects of a
proposed change to TCP. Consequently, there are no security
considerations directly related to the document. There are also no
known security considerations associated with the proposed change.
Poduri & Nichols Informational [Page 9]
RFC 2415 TCP Window Size September 1998
8. Authors' Addresses
Kedarnath Poduri
Bay Networks
4401 Great America Parkway
SC01-04
Santa Clara, CA 95052-8185
Phone: +1-408-495-2463
Fax: +1-408-495-1299
EMail: kpoduri@Baynetworks.com
Kathleen Nichols
Bay Networks
4401 Great America Parkway
SC01-04
Santa Clara, CA 95052-8185
EMail: knichols@baynetworks.com
Poduri & Nichols Informational [Page 10]
RFC 2415 TCP Window Size September 1998
Full Copyright Statement
Copyright (C) The Internet Society (1998). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Poduri & Nichols Informational [Page 11]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -