📄 rfc3067.txt
字号:
archiving this duration might be unlimited. Therefore,
implementations that limit expression of time value (such as 2038
date representation limitation in "Unix time") MUST be avoided.
6.15. Time granularity in IO time parameters shall not be specified
by the IODEF.
Comment:
The time data may be included into IODEF description by existing
information systems, retrieved from incident reporting messages or
taken from IDS data or other event registration tools. Each of these
cases may have its own different time granularity. For the purposes
of implementation, it should be possible to handle time at different
stages according to the local system capabilities.
6.16. The IODEF should support confidentiality of the description
content.
The selected design should be capable of supporting a variety of
encryption algorithms and must be adaptable to a wide variety of
environments.
Comment:
IODEF Incident descriptions potentially contain sensitive or private
information (such as forensic data (evidence data), passwords, or
persons/organisations identifiers) which would be of great interest
to an attacker or malefactor. Incident information normally will be
stored on a networked computer, which potentially may be exposed to
attacks (or compromised). Incident information may be transmitted
across uncontrolled network segments. Therefore, it is important
that the content be protected from unauthorised access and
modification. Furthermore, since the legal environment for privacy
Arvidsson, et al. Informational [Page 12]
RFC 3067 IODEF Requirements February 2001
and encryption technologies are varied from regions and countries and
change often, it is important that the design selected be capable of
supporting a number of different encryption options and be adaptable
by the user to a variety of environments. Additional measures may be
undertaken for securing the Incident during communication but this
issue is outside of IODEF scope as it implies more strict rules for
IO archiving and storing in general.
6.17. The IODEF should ensure the integrity of the description
content.
The selected design should be capable of supporting a variety of
integrity mechanisms and must be adaptable to a wide variety of
environments.
Comment:
Special measures should be undertaken to prevent malicious IO
changes.
Additional measures may be undertaken for securing the Incident
during communication but this issue is outside of IODEF scope.
6.18. The IODEF should ensure the authenticity and non-repudiation
of the message content.
Comment:
Authenticity and accountability is needed by many teams, especially
given the desire to automatically handle IOs, therefore it MUST be
included in the IODEF. Because of the importance of IO authenticity
and non-repudiation to many teams and especially in case of
communication between them, the implementation of these requirements
is strongly RECOMMENDED.
6.19. The IODEF description must support an extension mechanism
which may be used by implementers. This allows future
implementation-specific or experimental data. The implementer
MUST indicate how to interpret any included extensions.
Comment:
Implementers might wish to supply extra data such as information for
internal purposes or necessary for the particular implementation of
their Incident handling system. These data may be removed or not in
external communications but it is essential to mark them as
additional to prevent wrong interpretation by different systems.
Arvidsson, et al. Informational [Page 13]
RFC 3067 IODEF Requirements February 2001
6.20. The semantics of the IODEF description must be well defined.
Comment:
IODEF is a human oriented format for Incident description, and IODEF
description should be capable of being read by humans. The use of
automatic parsing tools is foreseen but should not be critically
necessary. Therefore, IODEF must provide good semantics, which will
be key to understanding what the description contains. In some
cases the IODEF description will be used for automatic decision
making, so it is important that the description be interpreted
correctly. This is an argument for using language-based semantics.
The metalanguage for IODEF identifiers and labels is proposed to be
English, a local IODEF implementation might be able to translate
metalanguage identifiers and labels into local language and
presentations if necessary.
7. IODEF extensibility
7.1. The IODEF itself MUST be extensible. It is essential that when
the use of new technologies and development of automated Incident
handling system demands extension of IODEF, the IODEF will be
capable to include new information.
Comment:
In addition to the need to extend IODEF to support new Incident
handling tools, it is also suggested that IODEF will incorporate new
developments from related standardisation areas such as IDEF for IDS
or the development of special format for evidence custody. The
procedure for extension should be based on CSIRT/IODEF community
acceptance/approval.
8. Security Considerations
This memo describes requirements to an Incident Object Description
and Exchange Format, which intends to define a common data format for
the description, archiving and exchange of information about
incidents between CSIRTs (including alert, incident in investigation,
archiving, statistics, reporting, etc.). In that respect the
implementation of the IODEF is a subject to security considerations.
Particular security requirement to access restriction indication is
discussed in section 4.3, requirements to Incident description
confidentiality, integrity, authenticity and non-repudiation are
described in sections 6.16, 6.17, 6.18.
Arvidsson, et al. Informational [Page 14]
RFC 3067 IODEF Requirements February 2001
9. References
[1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.
[2] Incident Taxonomy and Description Working Group Charter -
http://www.terena.nl/task-forces/tf-csirt/i-taxonomy/
[3] Intrusion Detection Exchange Format Requirements by Wood, M. -
December 2000, Work in Progress.
[4] Intrusion Detection Message Exchange Format Extensible Markup
Language (XML) Document Type Definition by D. Curry, H. Debar -
February 2001, Work in Progress.
[5] Guidelines for Evidence Collection and Archiving by Dominique
Brezinski, Tom Killalea - July 2000, Work in Progress.
[6] Brownlee, N. and E. Guttman, "Expectations for Computer Security
Incident Response", BCP 21, RFC 2350, June 1998.
[7] Shirey, R., "Internet Security Glossary", FYI 36, RFC 2828, May
2000.
[8] Establishing a Computer Security Incident Response Capability
(CSIRC). NIST Special Publication 800-3, November, 1991
[9] Handbook for Computer Security Incident Response Teams (CSIRTs),
Moira J. West-Brown, Don Stikvoort, Klaus-Peter Kossakowski. -
CMU/SEI-98-HB-001. - Pittsburgh, PA: Carnegie Mellon University,
1998.
[10] A Common Language for Computer Security Incidents by John D.
Howard and Thomas A. Longstaff. - Sandia Report: SAND98-8667,
Sandia National Laboratories -
http://www.cert.org/research/taxonomy_988667.pdf
[11] Best Current Practice of incident classification and reporting
schemes currently used by active CSIRTs. -
http://www.terena.nl/task-forces/tf-csirt/i-
taxonomy/docs/BCPreport1.rtf
[12] Taxonomy of the Computer Security Incident related terminology -
http://www.terena.nl/task-forces/tf-csirt/i-taxonomy/docs/i-
taxonomy_terms.html
[13] Multilingual Support in Internet/IT Applications. -
http://www.terena.nl/projects/multiling/
Arvidsson, et al. Informational [Page 15]
RFC 3067 IODEF Requirements February 2001
Acknowledgements:
This document was discussed at the Incident Taxonomy and Description
Working Group seminars (http://www.terena.nl/task-forces/tf-
csirt/tf-csirt000929prg.html#itdwg) in the frame of TERENA Task Force
TF-CSIRT (http://www.terena.nl/task-forces/tf-csirt/). Incident
Taxonomy and Description Working Group at TERENA can be contacted via
the mailing lists <incident-taxonomy@terena.nl> or <iodef@terena.nl>,
archives are available correspondently at
http://hypermail.terena.nl/incident-taxonomy-list/mail-archive/ and
http://hypermail.terena.nl/iodef-list/mail-archive/
Authors' Addresses
Jimmy Arvidsson
Telia CERT
EMail: Jimmy.J.Arvidsson@telia.se
Andrew Cormack
JANET-CERT
EMail: Andrew.Cormack@ukerna.ac.uk
Yuri Demchenko
TERENA
EMail: demch@terena.nl
Jan Meijer
SURFnet
EMail: jan.meijer@surfnet.nl
Arvidsson, et al. Informational [Page 16]
RFC 3067 IODEF Requirements February 2001
Full Copyright Statement
Copyright (C) The Internet Society (2001). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Arvidsson, et al. Informational [Page 17]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -