📄 rfc2071.txt
字号:
Special cases of bridging are realized in workgroup switching
systems, discussed below.
4.1.4 Limitations of Legacy Routing Systems
Other performance problems might come from routing mechanisms that
advertise excessive numbers of routing updates (e.g., RIP, IGRP).
Likewise, appropriate replacement protocols (e.g., OSPF, EIGRP, S-IS)
will work best with a structured addressing system that encourages
aggregation.
Ferguson & Berkowitz Informational [Page 5]
RFC 2071 Network Renumbering Overview January 1997
4.1.5 Limitations of System Administration Methodologies
There can be operational limits to growth based on the difficulty of
adds, moves and changes. As enterprise networks grow, it may be
necessary to delegate portions of address assignment and maintenance.
If address space has been assigned randomly or inefficiently, it may
be difficult to delegate portions of the address space.
It is not unusual for organizational networks to grow sporadically,
obtaining an address prefix here and there, in a non-contiguous
fashion. Depending on the number of prefixes that an organization
acquires over time, it may become increasingly unmanageable or demand
higher levels of maintenance and administration when individual
prefixes are acquired in this way.
Reasonable IP address management may in general simplify continuing
system administration; a good numbering plan is also a good
renumbering plan. Renumbering may force a discipline into system
administration that will reduce long-term support costs.
It has been observed "...there is no way to renumber a network
without an inventory of the hosts (absent DHCP). On a large network
that needs a database, plus tools and staff to maintain the
database."[10] It can be argued that a detailed inventory of router
configurations is even more essential.
4.2 Present
Organizations now face needs to connect to the global Internet, or at
a minimum to other organizations through bilateral private links.
Certain new transmission technologies have tended to redefine the
basic notion of an IP subnet. An IP numbering plan needs to work
with these new ideas. Legacy bridged networks and leading-edge
workgroup switched networks may very well need changes in the
subnetting structure. Renumbering needs may also develop due to the
characteristics of new WAN technologies, especially nonbroadcast
multi-access (NBMA) services such as Frame-Relay and Asynchronous
Transfer Mode (ATM).
Increased use of telecommuting by mobile workers, and in small and
home offices, need on-demand WAN connectivity, using modems or ISDN.
Effective use of demand media often requires changes in numbering and
routing.
Ferguson & Berkowitz Informational [Page 6]
RFC 2071 Network Renumbering Overview January 1997
4.2.1 Change in organizational structure or network topology
As companies grow, through mergers, acquisitions and reorganizations,
the need may arise for realignment and modification of the various
organizational network architectures. The connectivity of disparate
corporate networks present unique challenges in the realm of
renumbering, since one or more individual networks may have to be
blended into a much larger architecture consisting a different IP
address prefix altogether.
4.2.2 Inter-Enterprise Connectivity
Even if they do not connect to the general Internet, enterprises may
interconnect to other organizations which have independent numbering
systems. Such connectivity can be as simple as bilateral dedicated
circuits. If both enterprises use unregistered or private address
space, they run the risk of using duplicate addresses.
In such cases, one or both organizations may need to renumber into
different parts of the private address space, or obtain unique
registered addresses.
4.2.3 Change of Internet Service Provider
As mentioned previously in Section 2, it is increasingly becoming
current practice for organizations to have their IP addresses
allocated by their upstream ISP. Also, with the advent of Classless
Inter Domain Routing (CIDR) [11], and the considerable growth in the
size of the global Internet table, Internet Service Providers are
becoming more and more reluctant to allow customers to continue using
addresses which were allocated by the ISP, when the customer
terminates service and moves to another ISP. The prevailing reason
is that the ISP was previously issued a CIDR block of contiguous
address space, which can be announced to the remainder of the
Internet community as a single prefix. (A prefix is what is referred
to in classless terms as a contiguous block of IP addresses.) If a
non-customer advertises a specific component of the CIDR block, then
this adds an additional routing entry to the global Internet routing
table. This is what is commonly referred to as "punching holes" in a
CIDR block. Consequently, there are usually no routing anomalies in
doing this since a specific prefix is always preferred over an
aggregate route. However, if this practice were to happen on a large
scale, the growth of the global routing table would become much
larger, and perhaps too large for current backbone routers to
accommodate in an acceptable fashion with regards to performance of
recalculating routing information and sheer size of the routing table
itself. For obvious reasons, this practice is highly discouraged by
ISP's with CIDR blocks, and some ISP's are making this a contractual
Ferguson & Berkowitz Informational [Page 7]
RFC 2071 Network Renumbering Overview January 1997
issue, so that customers understand that addresses allocated by the
ISP are non-portable.
It is noteworthy to mention that the likelihood of being forced to
renumber in this situation is inversely proportional to the size of
the customer's address space. For example, an organization with a
/16 allocation may be allowed to consider the address space
"portable", while an organization with multiple non-contiguous /24
allocations may not. While the scenarios may be vastly different in
scope, it becomes an issue to be decided at the discretion of the
initial allocating entity, and the ISP's involved; the major deciding
factor being whether or not the change will fragment an existing CIDR
block and whether it will significantly contribute to the overall
growth of the global Internet routing tables.
It should also be noted that (contrary to opinions sometimes voiced)
this form of renumbering is a technically necessary consequence of
changing ISP's, rather than a commercial or political mandate.
4.2.3 Internet Global Routing
Even large organizations, now connected to the Internet with
"portable" address space, may find their address allocation too
small. Current registry guidelines require that address space usage
be justified by an engineering plan. Older networks may not have
efficiently utilized existing address space, and may need to make
their existing structures more efficient before new address
allocations can be made.
4.2.4 Internal Use of LAN Switching
Introducing workgroup switches may introduce subtle renumbering
needs. Fundamentally, workgroup switches are specialized, high-
performance bridges, which make their main forwarding decisions based
on Layer 2 (MAC) address information. Even so, they rarely are
independent of Layer 3 (IP) address structure. Pure Layer 2
switching has a "flat" address space that will need to be renumbered
into a hierarchical, subnetted space consistent with routing.
Introducing single switches or stacks of switches may not have
significant impact on addressing, as long as it is understood that
each system of switches is a single broadcast domain. Each broadcast
domain should map to a single IP subnetwork.
Virtual LANs (VLANs) further extend the complexity of the role of
workgroup switches. It is generally true that moving an end station
from one switch port to another within the same VLAN will not cause
major changes in addressing. Many overview presentations of this
Ferguson & Berkowitz Informational [Page 8]
RFC 2071 Network Renumbering Overview January 1997
technology do not make it clear that moving the same end station
between different VLANs will move the end station into another IP
subnet, requiring a significant address change.
Switches are commonly managed by SNMP applications. These network
management applications communicate with managed devices using IP.
Even if the switch does not do IP forwarding, it will itself need IP
addresses if it is to be managed. Also, if the clients and servers in
the workgroup are managed by SNMP, they will also require IP
addresses. The workgroup, therefore, will need to appear as one or
more IP subnetworks.
Increasingly, internetworking products are not purely Layer 2 or
Layer 3 devices. A workgroup switch product often includes a routing
function, so the numbering plan must support both flat Layer 2 and
hierarchical Layer 3 addressing.
4.2.4 Internal Use of NBMA Cloud Services
"Cloud" services such as frame relay often are more economical than
traditional services. At first glance, when converting existing
enterprise networks to NBMA, it might appear that the existing subnet
structure should be preserved, but this is often not the case.
Many organizations often began by treating the "cloud" as a single
subnet, but experience has shown it is often better to treat the
individual virtual circuits as separate subnets, which appear as
traditional point-to-point circuits. When the individual point-to-
point VCs become separate subnets, efficient address utilization
requires the use of long prefixes (i.e., 30 bit) for these subnets.
In practice, obtaining 30 bit prefixes means the logical network
should support variable length subnet masks (VLSM). VLSMs are the
primary method in which an assigned prefix can be subnetted
efficiently for different media types. This is accomplished by
establishing one or more prefix lengths for LAN media with more than
two hosts, and subdividing one or more of these shorter prefixes into
longer /30 prefixes that minimize address loss.
There are alternative ways to configure routing over NBMA, using
special mechanisms to exploit or simulate point-to-multipoint VCs.
These often have a significant performance impact, and may be less
reliable because a single routing point of failure is created.
Motivations for such alternatives tend to include:
Ferguson & Berkowitz Informational [Page 9]
RFC 2071 Network Renumbering Overview January 1997
1. A desire not to use VLSM. This is often founded in fear
rather than technology.
2. Router implementation issues that limit the number of subnets
or interfaces a given router can support.
3. An inherently point-to-multipoint application (e.g., remote
hosts to a data center). In such cases, some of the
limitations are due to the dynamic routing protocol in use.
In such "hub-and-spoke" implementations, static routing can
be preferable from a performance and flexibility standpoint,
since it does not produce routing protocol chatter and is
unaffected by split horizon constraints (namely, the inability
to build an adjacency with a peer within the same IP
subnetwork).
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -