📄 rfc2071.txt
字号:
Network Working Group P. Ferguson
Request for Comments: 2071 cisco Systems, Inc.
Category: Informational H. Berkowitz
PSC International
January 1997
Network Renumbering Overview:
Why would I want it and what is it anyway?
Status of this Memo
This memo provides information for the Internet community. This memo
does not specify an Internet standard of any kind. Distribution of
this memo is unlimited.
Abstract
The PIER [Procedures for Internet/Enterprise Renumbering] working
group is compiling a series of documents to assist and instruct
organizations in their efforts to renumber. However, it is becoming
apparent that, with the increasing number of new Internet Service
Providers (ISP's) and organizations getting connected to the Internet
for the first time, the concept of network renumbering needs to be
further defined. This document attempts to clearly define the
concept of network renumbering and discuss some of the more pertinent
reasons why an organization would have a need to do so.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Background . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. Network Renumbering Defined. . . . . . . . . . . . . . . . . 3
4. Reasons for Renumbering. . . . . . . . . . . . . . . . . . . 3
5. Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6. Security Considerations . . . . . . . . . . . . . . . . . . 12
7. Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . 12
8. References . . . . . . . . . . . . . . . . . . . . . . . . . 13
9. Authors' Addresses . . . . . . . . . . . . . . . . . . . . . 14
Ferguson & Berkowitz Informational [Page 1]
RFC 2071 Network Renumbering Overview January 1997
1. Introduction
The popularity of connecting to the global Internet over the course
of the past several years has spawned new problems; what most people
casually refer to as "growing pains" can be attributed to more basic
problems in understanding the requirements for Internet connectivity.
However, the reasons why organizations may need to renumber their
networks can greatly vary. We'll discuss these issues in some amount
of detail below. It is not within the intended scope of this
document to discuss renumbering methodologies, techniques, or tools.
2. Background
The ability for any network or interconnected devices, such as
desktop PCs or workstations, to obtain connectivity to any potential
destination in the global Internet is reliant upon the possession of
unique IP host addresses [1]. A duplicate host address that is being
used elsewhere in the Internet could best be described as
problematic, since the presence of duplicate addresses would cause
one of the destinations to be unreachable from some origins in the
Internet. It should be noted, however, that globally unique IP
addresses are not always necessary, and is dependent on the
connectivity requirements [2].
However, the recent popularity in obtaining Internet connectivity has
made these types of connectivity dependencies unpredictable, and
conventional wisdom in the Internet community dictates that the
various address allocation registries, such as the InterNIC, as well
as the ISP's, become more prudent in their address allocation
strategies. In that vein, the InterNIC has defined address
allocation policies [3] wherein the majority of address allocations
for end-user networks are accommodated by their upstream ISP, except
in cases where dual- or multihoming and very large blocks of
addresses are required. With this allocation policy becoming
standard current practice, it presents unique problems regarding the
portability of addresses from one provider to another.
As a practical matter, end users cannot assume they "own" address
allocations, if their intention is to be to have full connectivity to
the global Internet. Rather, end users will "borrow" part of the
address space of an upstream provider's allocation. The larger
provider block from which their space is suballocated will have been
assigned in a manner consistent with global Internet routing.
Not having "permanent" addresses does not mean users will not have
unique identifiers. Such identifiers are typically Domain Name System
(DNS) [4] names for endpoints such as servers and workstations.
Mechanisms such as the Dynamic Host Configuration Protocol (DHCP) [5]
Ferguson & Berkowitz Informational [Page 2]
RFC 2071 Network Renumbering Overview January 1997
can help automate the assignment and maintenance of host names, as
well as the 'borrowed' addresses required for routing-level
connectivity.
The PIER Working Group is developing procedures and guidelines for
detailed renumbering of specific technologies, such as routers [6].
PIER WG documents are intended to suggest methods both for making
existing networks prepared for convenient renumbering, as well as for
operational transition to new addressing schemes.
Also, in many instances, organizations who have never connected to
the Internet, yet have been using arbitrary blocks of addresses since
their construction, have different and unique challenges.
3. Network Renumbering Defined
In the simplest of definitions, the exercise of renumbering a network
consists of changing the IP host addresses, and perhaps the network
mask, of each device within the network that has an address
associated with it. This activity may or may not consist of all
networks within a particular domain, such as FOO.EDU, or networks
which comprise an entire autonomous system.
Devices which may need to be renumbered, for example, are networked
PC's, workstations, printers, file servers, terminal servers, and
routers. Renumbering a network may involve changing host parameters
and configuration files which contain IP addresses, such as
configuration files which contain addresses of DNS and other servers,
addresses contained in SNMP [7] management stations, and addresses
configured in access control lists. While this is not an all-
inclusive list, the PIER working group is making efforts to compile
documentation to identify these devices in a more detailed fashion.
Network renumbering need not be sudden activity, either; in most
instances, an organization's upstream service provider(s) will allow
a grace period where both the "old" addresses and the "new" addresses
may be used in parallel.
4. Reasons for Renumbering
The following sections discuss particular reasons which may
precipitate network renumbering, and are not presented in any
particular order of precedence. They are grouped into reasons that
primarily reflect decisions made in the past, operational
requirements of the present, or plans for the future.
Ferguson & Berkowitz Informational [Page 3]
RFC 2071 Network Renumbering Overview January 1997
Some of these requirements reflect evolution in the organization's
mission, such as a need to communicate with business partners, or to
work efficiently in a global Internet. Other requirements reflect
changes in network technologies.
4.1 Past
Many organizations implemented IP-based networks not for connectivity
to the Internet, but simply to make use of effective data
communications mechanisms. These organizations subsequently found
valid reasons to connect to other organizations or the Internet in
general, but found the address structures they chose incompatible
with overall Internet practice.
Other organizations connected early to the Internet, but did so at a
time when address space was not scarce. Yet other organizations
still have no requirement to connect to the Internet, but have legacy
addressing structures that do not scale to adequate size.
4.1.1 Initial addressing using non-unique addresses
As recently as two years ago, many organizations had no intention of
connecting to the Internet, and constructed their corporate or
organizational network(s) using unregistered, non-unique network
addresses. Obviously, as most problems evolve, these same
organizations determined that Internet connectivity had become a
valuable asset, and subsequently discovered that they could no longer
use the same unregistered, non-unique network addresses that were
previously deployed throughout their organization. Thus, the labor
of renumbering to valid network addresses is now upon them, as they
move to connect to the global Internet.
While obtaining valid, unique addresses is certainly required to
obtain full Internet connectivity in most circumstances, the number
of unique addresses required can be significantly reduced by the
implementation of Network Address Translation (NAT) devices [8] and
the use of private address space, as specified in [9]. NAT reduces
not only the number of required unique addresses, but also localizes
the changes required by renumbering.
It should also be noted that NAT technology may not always be a
viable option, depending upon scale of addressing, performance or
topological constraints.
Ferguson & Berkowitz Informational [Page 4]
RFC 2071 Network Renumbering Overview January 1997
4.1.2 Legacy address allocation
There are also several instances where organizations were originally
allocated very large amounts of address space, such as traditional
"Class A" or "Class B" allocations, while the actual address
requirements are much less than the total amount of address space
originally allocated. In many cases, these organizations could
suffice with a smaller CIDR allocation, and utilize the allocated
address space in a more efficient manner. As allocation requirements
become more stringent, mechanisms to review how these organizations
are utilizing their address space could, quite possibly, result in a
request to return the original allocation to a particular registry
and renumber with a more appropriately sized address block.
4.1.3 Limitations of Bridged Internetworks
Bridging has a long and distinguished history in legacy networks. As
networks grow, however, traditional bridged networks reach
performance- and stability-related limits, including (but not limited
to) broadcast storms.
Early routers did not have the speed to handle the needs of some
large networks. Some organizations were literally not able to move
to routers until router forwarding performance improved to be
comparable to bridges. Now that routers are of comparable or
superior speed, and offer more robust features, replacing bridged
networks becomes reasonable.
IP addresses assigned to pure bridged networks tend not to be
subnetted, yet subnetting is a basic approach for router networks.
Introducing subnetting is a practical necessity in moving from
bridging to routing.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -