📄 rfc1272.txt
字号:
In other cases USAGE-SENSITIVE charges may be preferred or required
by a local administration's policy. Government regulations or the
wishes of subscribers with low or intermittent traffic patterns may
force the issue (note: FLAT FEES are beneficial for heavy network
users. USAGE SENSITVE charges generally benefit the low-volume
user). Where usage-sensitive accounting is used, cost ceilings and
floors may still be established by static parameters, such as "pipe
size" for fixed connections or "connection time" for dial-up
connection, to satisfy the need for some predictability.
Mills, Hirsh, & Ruth [Page 5]
RFC 1272 Internet Accounting: Background November 1991
Different billing schemes may be employed depending on network
measures of distance. For example, local network traffic may be
flat-rate and remote internet traffic may be usage-based, analogous
to the local and long distance billing policies adopted by the
telephone companies.
The ANRG is independently investigating policy models and
infrastructure economics for billing and cost recovery.
3.3. The Nature of Usage Accounting
Although the exact requirements for internet usage accounting will
vary from one network administration to the next and will depend on
policies and cost trade-offs, it is possible to characterize the
problem in some broad terms and thereby bound it. Rather than try to
solve the problem in exhaustive generality (providing for every
imaginable set of accounting requirements), some assumptions about
usage accounting are posited in order to make the problem tractable
and to render implementations feasible. Since these assumptions form
the basis for our architectural and design work, it is important to
make them explicit from the outset and hold them up to the scrutiny
of the Internet community.
3.3.1. A Model for Internet Accounting
We begin with the assumption that there is a "network administrator"
or "network administration" to whom internet accounting is of
interest. He "owns" and operates some subset of the internet (one or
more connected networks)that may be called his "administrative
domain". This administrative domain has well defined boundaries.
our domain X
-------------------
/ | | | |
/ | C
/ ------ /
Network A / | \ /
----- (diagonals \___/____
| | | cross admin. domain B
boundaries)
The network administrator is interested in 1) traffic within his
boundaries and 2) traffic crossing his boundaries. Within his
boundaries he may be interested in end-system to end-system
accounting or accounting at coarser granularities (e.g., department
to department).
Mills, Hirsh, & Ruth [Page 6]
RFC 1272 Internet Accounting: Background November 1991
The network administrator is usually not interested in accounting for
end-systems outside his administrative domain; his primary concern is
accounting to the level of other ADJACENT (directly connected)
administrative domains. Consider the viewpoint of the administrator
for domain X of the internet. The idea is that he will send each
adjacent administrative domain a bill (or other statement of
accounting) for its use of his resources and it will send him a bill
for his use of its resources. When he receives an aggregate bill
from Network A, if he wishes to allocate the charges to end users or
subsystems within his domain, it is HIS responsibility to collect
accounting data about how they used the resources of Network A. If
the "user" is in fact another administrative domain, B, (on whose
behalf X was using A's resources) the administrator for X just sends
his counterpart in B a bill for the part of X's bill attributable to
B's usage. If B was passing traffic for C, them B bills C for the
appropriate portion X's charges, and so on, until the charges
percolate back to the original end user, say G. Thus, the
administrator for X does not have to account for G's usage; he only
has to account for the usage of the administrative domains directly
adjacent to himself.
This paradigm of recursive accounting may, of course, be used WITHIN
an administrative domain that is (logically) comprised of sub-
administrative domains.
The discussion of the preceding paragraphs applies to a general mesh
topology, in which any Internet constituent domain may act as a
service provider for any connected domain. Although the Internet
topology is in fact such a mesh, there is a general hierarchy to its
structure and hierarchical routing (when implemented) will make it
logically hierarchical as far as traffic flow is concerned. This
logical hierarchy permits a simplification of the usage accounting
perspective.
At the bottom of the service hierarchy a service-consuming host sits
on one of many "stub" networks. These are interconnected into an
enterprise-wide extended LAN, which in turn receives Internet
service, typically from a single attachment to a regional backbone.
Regional backbones receive national transport services from national
backbones such as NSFnet, Alternet, PSInet, CERFnet, NSInet, or
Nordunet. In this scheme each level in the hierarchy has a
constituency, a group for which usage reporting is germane, in the
level underneath it. In the case of the NSFnet the natural
constituency, for accounting purposes at least, is the regional nets
(MIDnet, SURAnet,...). For the regionals it will be their member
institutions; for the institutions, their stub networks; and for the
stubs, their individual hosts.
Mills, Hirsh, & Ruth [Page 7]
RFC 1272 Internet Accounting: Background November 1991
3.3.2. Implications of the Model
The significance of the model sketched above is that Internet
accounting must be able to support accounting for adjacent
(intermediate) systems, as well as end-system accounting. Adjacent
system accounting information cannot be derived from end-system
accounting (even if complete end-system accounting were feasible)
because traffic from an end-system may reach the administrative
domain of interest through different adjacent domains, and it is the
adjacent domain through which it passes that is of interest.
The need to support accounting for adjacent intermediate systems
means that internet accounting will require information not present
in internet protocol headers (these headers contain source and
destination addresses of end-systems only). This information may
come from lower layer protocols (network or link layer) or from
configuration information for boundary components (e.g., "what system
is connected to port 5 of this IP router").
4. Meters
A METER is a process which examines a stream of packets on a
communications medium or between a pair of media. The meter records
aggregate counts of packets belonging to FLOWs between communicating
entities (hosts/processes or aggregations of communicating hosts
(domains)). The assignment of packets to flows may be done by
executing a series of rules. Meters can reasonably be implemented in
any of three environments -- dedicated monitors, in routers or in
general-purpose systems.
Meter location is a critical decision in internet accounting. An
important criterion for selecting meter location is cost, i.e.,
REDUCING ACCOUNTING OVERHEAD and MINIMIZING THE COST OF
IMPLEMENTATION.
In the trade-off between overhead (cost of accounting) and detail,
ACCURACY and RELIABILITY play a decisive role. Full accuracy and
reliability for accounting purposes require that EVERY packet must be
examined. However, if the requirement for accuracy and reliability
is relaxed, statistical sampling may be more practical and
sufficiently accurate, and DETAILED ACCOUNTING is not required at
all. Accuracy and reliability requirements may be less stringent
when the purpose of usage-reporting is solely to understand network
behavior, for network design and performance tuning, or when usage
reporting is used to approximate cost allocations to users as a
percentage of total fees.
Overhead costs are minimized by accounting at the coarsest acceptable
Mills, Hirsh, & Ruth [Page 8]
RFC 1272 Internet Accounting: Background November 1991
GRANULARITY, i.e., using the greatest amount of AGGREGATION possible
to limit the number of accounting records generated, their size, and
the frequency with which they are transmitted across the network or
otherwise stored.
The other cost factor lies in implementation. Implementation will
necessitate the development and introduction of hardware and software
components into the internet. It is important to design an
architecture that tends to minimize the cost of these new components.
4.1. Meter Placement
In the model developed above, the Internet may be viewed as a
hierarchical system of service providers and their corresponding
constituencies. In this scheme the service provider accounts for the
activity of the constituents or service consumers. Meters should be
placed to allow for optimal data collection for the relevant
constituency and technology. Meters are most needed at
administrative boundaries and data collected such that service
provider and consumer are able to reconcile their activities.
Routers (and/or bridges) are by definition and design placed
(topologically) at these boundaries and so it follows that the most
generally convenient place to position accounting meters is in or
near the router. But again this depends on the underlying transport.
Whenever the service-providing network is broadcast (e.g., bus-
based), not extended (i.e., without bridging or routing), then meter
placement is of no particular consequence. If one were generating
usage reports for a stub LAN, meters could reasonably be placed in a
router, a dedicated monitor, or a host at any point on the LAN.
Where an enterprise-wide network is a LAN, the same observation
holds. At the boundary between an enterprise and a regional network,
however, in or near a router is an appropriate location for meters
that will measure the enterprise's network activity.
Meters are placed in (or near) routers to count packets at the
Internet Protocol Level. All traffic flows through two natural
metering points: hosts and routers (Internet packet switches). Hosts
are the ultimate source and sink of all traffic. Routers monitor all
traffic which passes IN or OUT of each network. Motivations for
selecting the routers as the metering points are:
o Minimization of cost and overhead.
(by concentrating the accounting function). Centralize
and minimize in terms of number of geographical or
administrative regions, number of protocols monitored,
and number of separate implementations modified. (Hosts
are too diverse and numerous for easy standardization.
Mills, Hirsh, & Ruth [Page 9]
RFC 1272 Internet Accounting: Background November 1991
Routers concentrate traffic and are more homogeneous.)
o Traffic control.
When and if usage sensitive quotas are involved, changes
in meter status (e.g., exceeding a quota) would result in
an active influence on network traffic (the router starts
denying access). A passive measuring device cannot
control network access in response to detecting state.
o Intermediate system accounting.
As discussed above, internet accounting includes both
end-system and intermediate system accounting. Hosts see
only end-system traffic; routers see both the end-systems
(internet source and destination) and the adjacent
intermediate systems.
Therefore, meters should be placed at:
o administrative boundaries
only for measuring inter-domain traffic;
o stub networks
for measuring intra-domain traffic. For intra-domain
traffic, the requirement for performing accounting at
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -