⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rfc2465.txt

📁 RFC 的详细文档!
💻 TXT
📖 第 1 页 / 共 5 页
字号:






Network Working Group                                        D. Haskin
Request for Comments: 2465                                   S. Onishi
Category: Standards Track                           Bay Networks, Inc.
                                                         December 1998


             Management Information Base for IP Version 6:
                 Textual Conventions and General Group

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (1998).  All Rights Reserved.

Abstract

   This document is one in the series of documents that provide MIB
   definitions for for IP Version 6.  Specifically, the IPv6 MIB textual
   conventions as well as the IPv6 MIB General group is defined in this
   document.

   This memo defines a portion of the Management Information Base (MIB)
   for use with network management protocols in the IPv6-based
   internets.

   This document specifies a MIB module in a manner that is both
   compliant to the SNMPv2 SMI, and semantically identical to the peer
   SNMPv1 definitions.

Table of Contents

   1.  The SNMPv2 Network Management Framework .............    2
   1.1   Object Definitions ................................    2
   2.  Overview ............................................    2
   3.  IPv6 Address Representation .........................    3
   4.  Definition of Textual Conventions ...................    4
   5.  The IPv6 General Group ..............................    5
   6.  Acknowledgments .....................................   36
   7.  References ..........................................   36
   8.  Security Considerations .............................   37
   9.  Authors' Addresses...................................   37



Haskin & Onishi             Standards Track                     [Page 1]

RFC 2465                IPv6 MIB: General Group            December 1998


   10. Full Copyright Statement.............................   38

1.  The SNMPv2 Network Management Framework

   The SNMPv2 Network Management Framework presently consists of three
   major components.  They are:

   o    the SMI, described in RFC 1902 [1] - the mechanisms used
        for describing and naming objects for the purpose of management.

   o    the MIB-II, described in RFC 1213/STD 17 [3] - the core
        set of managed objects for the Internet suite of protocols.

   o    RFC 1157/STD 15 [4] and RFC 1905 [5] which define two versions
        of the protocol used for network access to managed objects.

   The Framework permits new objects to be defined for the purpose of
   experimentation and evaluation.

1.1.  Object Definitions

   Managed objects are accessed via a virtual information store, termed
   the Management Information Base or MIB.  Objects in the MIB are
   defined using the subset of Abstract Syntax Notation One (ASN.1)
   defined in the SMI.  In particular, each object type is named by an
   OBJECT IDENTIFIER, an administratively assigned name.  The object
   type together with an object instance serves to uniquely identify a
   specific instantiation of the object.  For human convenience, we
   often use a textual string, termed the descriptor, to refer to the
   object type.

2.  Overview

   This document is the first in the series of documents that define
   various MIB object groups for IPv6. These groups are the basic unit
   of conformance: if the semantics of a group is applicable to an
   implementation, then it must implement all objects in that group.
   For example, an implementation must implement the TCP group if and
   only if it implements the TCP over IPv6 protocol.  At minimum,
   implementations must implement the IPv6 General group defined in this
   document as well as the ICMPv6 group [9].










Haskin & Onishi             Standards Track                     [Page 2]

RFC 2465                IPv6 MIB: General Group            December 1998


   This document defines the IPv6 MIB textual conventions as well as the
   IPv6 General group which provides for the basic management of IPv6
   entities and serve as the foundation for other IPv6 MIB definitions.

   The IPv6 General group consists of 6 tables:

       - ipv6IfTable

            The IPv6 Interfaces table contains information on the
            entity's IPv6 interfaces.

       - ipv6IfStatsTable

            This table contains information on the traffic statistics of
            the entity's IPv6 interfaces.

       - ipv6AddrPrefixTable

            The IPv6 Address Prefix table contains information on
            Address Prefixes that are associated with the entity's IPv6
            interfaces.

       - ipv6AddrTable

            This table contains the addressing information relevant to
            the entity's IPv6 interfaces.

       - ipv6RouteTable

            The IPv6 routing table contains an entry for each valid IPv6
            unicast route that can be used for packet forwarding
            determination.

       - ipv6NetToMediaTable


            The IPv6 address translation table contain the IPv6 Address
            to `physical' address equivalencies.

3.  IPv6 Address Representation

   The IPv6 MIB defined in this memo uses an OCTET STRING of length 16
   to represent 128-bit IPv6 address in network byte- order.  This
   approach allows to implement IPv6 MIB without requiring any changes
   to the SNMPv2 SMI and compliant SNMP implementations.






Haskin & Onishi             Standards Track                     [Page 3]

RFC 2465                IPv6 MIB: General Group            December 1998


4.  Definition of Textual Conventions

        IPV6-TC DEFINITIONS ::= BEGIN

        IMPORTS
             Integer32                FROM SNMPv2-SMI
             TEXTUAL-CONVENTION       FROM SNMPv2-TC;


        -- definition of textual conventions
        Ipv6Address ::= TEXTUAL-CONVENTION
             DISPLAY-HINT "2x:"
             STATUS       current
             DESCRIPTION
               "This data type is used to model IPv6 addresses.
                This is a binary string of 16 octets in network
                byte-order."
             SYNTAX       OCTET STRING (SIZE (16))

        Ipv6AddressPrefix ::= TEXTUAL-CONVENTION
             DISPLAY-HINT "2x:"
             STATUS       current
             DESCRIPTION
               "This data type is used to model IPv6 address
               prefixes. This is a binary string of up to 16
               octets in network byte-order."
             SYNTAX       OCTET STRING (SIZE (0..16))

        Ipv6AddressIfIdentifier ::= TEXTUAL-CONVENTION
             DISPLAY-HINT "2x:"
             STATUS       current
             DESCRIPTION
               "This data type is used to model IPv6 address
               interface identifiers. This is a binary string
                of up to 8 octets in network byte-order."
             SYNTAX      OCTET STRING (SIZE (0..8))

        Ipv6IfIndex ::= TEXTUAL-CONVENTION
             DISPLAY-HINT "d"
             STATUS       current
             DESCRIPTION
               "A unique value, greater than zero for each
               internetwork-layer interface in the managed
               system. It is recommended that values are assigned
               contiguously starting from 1. The value for each
               internetwork-layer interface must remain constant
               at least from one re-initialization of the entity's
               network management system to the next



Haskin & Onishi             Standards Track                     [Page 4]

RFC 2465                IPv6 MIB: General Group            December 1998


               re-initialization."
             SYNTAX       Integer32 (1..2147483647)

        Ipv6IfIndexOrZero ::= TEXTUAL-CONVENTION
             DISPLAY-HINT "d"
             STATUS       current
             DESCRIPTION
                 "This textual convention is an extension of the
                 Ipv6IfIndex convention.  The latter defines
                 a greater than zero value used to identify an IPv6
                 interface in the managed system.  This extension
                 permits the additional value of zero.  The value
                 zero is object-specific and must therefore be
                 defined as part of the description of any object
                 which uses this syntax.  Examples of the usage of
                 zero might include situations where interface was
                 unknown, or when none or all interfaces need to be
                 referenced."
             SYNTAX       Integer32 (0..2147483647)

        END

5.  The IPv6 General Group


         IPV6-MIB DEFINITIONS ::= BEGIN

         IMPORTS
             MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
             mib-2, Counter32, Unsigned32, Integer32,
             Gauge32                               FROM SNMPv2-SMI
             DisplayString, PhysAddress, TruthValue, TimeStamp,
             VariablePointer, RowPointer           FROM SNMPv2-TC
             MODULE-COMPLIANCE, OBJECT-GROUP,
             NOTIFICATION-GROUP                    FROM SNMPv2-CONF
             Ipv6IfIndex, Ipv6Address, Ipv6AddressPrefix,
             Ipv6AddressIfIdentifier,
             Ipv6IfIndexOrZero                     FROM IPV6-TC;

         ipv6MIB MODULE-IDENTITY
             LAST-UPDATED "9802052155Z"
             ORGANIZATION "IETF IPv6 Working Group"
             CONTACT-INFO
               "           Dimitry Haskin

                   Postal: Bay Networks, Inc.
                           660 Techology Park Drive.
                           Billerica, MA  01821



Haskin & Onishi             Standards Track                     [Page 5]

RFC 2465                IPv6 MIB: General Group            December 1998


                           US

                      Tel: +1-978-916-8124
                   E-mail: dhaskin@baynetworks.com

                           Steve Onishi

                   Postal: Bay Networks, Inc.
                           3 Federal Street
                           Billerica, MA 01821
                           US

                      Tel: +1-978-916-3816
                   E-mail: sonishi@baynetworks.com"
             DESCRIPTION
               "The MIB module for entities implementing the IPv6
                protocol."
             ::= { mib-2 55 }


         -- the IPv6 general group

         ipv6MIBObjects OBJECT IDENTIFIER   ::= { ipv6MIB 1 }


         ipv6Forwarding OBJECT-TYPE
             SYNTAX      INTEGER {
                          forwarding(1),    -- acting as a router

                                            -- NOT acting as
                          notForwarding(2)  -- a router
                         }
              MAX-ACCESS read-write
              STATUS     current
              DESCRIPTION
                "The indication of whether this entity is acting
                as an IPv6 router in respect to the forwarding of
                datagrams received by, but not addressed to, this
                entity.  IPv6 routers forward datagrams.  IPv6
                hosts do not (except those source-routed via the
                host).

                Note that for some managed nodes, this object may
                take on only a subset of the values possible.
                Accordingly, it is appropriate for an agent to
                return a `wrongValue' response if a management
                station attempts to change this object to an
                inappropriate value."



Haskin & Onishi             Standards Track                     [Page 6]

RFC 2465                IPv6 MIB: General Group            December 1998


              ::= { ipv6MIBObjects 1 }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -