📄 rfc3024.txt
字号:
Network Working Group G. Montenegro, Editor
Request for Comments: 3024 Sun Microsystems, Inc.
Obsoletes: 2344 January 2001
Category: Standards Track
Reverse Tunneling for Mobile IP, revised
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2001). All Rights Reserved.
Abstract
Mobile Internet Protocol (IP) uses tunneling from the home agent to
the mobile node's care-of address, but rarely in the reverse
direction. Usually, a mobile node sends its packets through a router
on the foreign network, and assumes that routing is independent of
source address. When this assumption is not true, it is convenient
to establish a topologically correct reverse tunnel from the care-of
address to the home agent.
This document proposes backwards-compatible extensions to Mobile IP
to support topologically correct reverse tunnels. This document does
not attempt to solve the problems posed by firewalls located between
the home agent and the mobile node's care-of address.
This document obsoletes RFC 2344.
Montenegro Standards Track [Page 1]
RFC 3024 Reverse Tunneling for Mobile IP, revised January 2001
Table of Contents
1. Introduction ................................................... 3
1.1. Terminology .................................................. 4
1.2. Assumptions .................................................. 4
1.3. Justification ................................................ 5
2. Overview ....................................................... 5
3. New Packet Formats ............................................. 6
3.1. Mobility Agent Advertisement Extension ....................... 6
3.2. Registration Request ......................................... 6
3.3. Encapsulating Delivery Style Extension ....................... 7
3.4. New Registration Reply Codes ................................. 8
4. Changes in Protocol Behavior ................................... 9
4.1. Mobile Node Considerations ................................... 9
4.1.1. Sending Registration Requests to the Foreign Agent ......... 9
4.1.2. Receiving Registration Replies from the Foreign Agent ...... 10
4.2. Foreign Agent Considerations ................................. 10
4.2.1. Receiving Registration Requests from the Mobile Node ....... 11
4.2.2. Relaying Registration Requests to the Home Agent ........... 11
4.3. Home Agent Considerations .................................... 11
4.3.1. Receiving Registration Requests from the Foreign Agent ..... 12
4.3.2. Sending Registration Replies to the Foreign Agent .......... 12
5. Mobile Node to Foreign Agent Delivery Styles ................... 13
5.1. Direct Delivery Style ........................................ 13
5.1.1. Packet Processing .......................................... 13
5.1.2. Packet Header Format and Fields ............................ 13
5.2. Encapsulating Delivery Style ................................. 14
5.2.1 Packet Processing ........................................... 14
5.2.2. Packet Header Format and Fields ............................ 15
5.3. Support for Broadcast and Multicast Datagrams ................ 16
5.4. Selective Reverse Tunneling .................................. 16
6. Security Considerations ........................................ 17
6.1. Reverse-tunnel Hijacking and Denial-of-Service Attacks ....... 17
6.2. Ingress Filtering ............................................ 18
6.3. Reverse Tunneling for Disparate Address Spaces ............... 18
7. IANA Considerations ............................................ 18
8. Acknowledgements ............................................... 18
References ........................................................ 19
Editor and Chair Addresses ........................................ 20
Appendix A: Disparate Address Space Support ....................... 21
A.1. Scope of the Reverse Tunneling Solution ................... 21
A.2. Terminating Forward Tunnels at the Foreign Agent .......... 24
A.3. Initiating Reverse Tunnels at the Foreign Agent ........... 26
A.4. Limited Private Address Scenario .......................... 26
Appendix B: Changes from RFC2344 .................................. 29
Full Copyright Statement .......................................... 30
Montenegro Standards Track [Page 2]
RFC 3024 Reverse Tunneling for Mobile IP, revised January 2001
1. Introduction
Section 1.3 of the Mobile IP specification [1] lists the following
assumption:
It is assumed that IP unicast datagrams are routed based on the
destination address in the datagram header (i.e., not by source
address).
Because of security concerns (for example, IP spoofing attacks), and
in accordance with RFC 2267 [8] and CERT [3] advisories to this
effect, routers that break this assumption are increasingly more
common.
In the presence of such routers, the source and destination IP
address in a packet must be topologically correct. The forward
tunnel complies with this, as its endpoints (home agent address and
care-of address) are properly assigned addresses for their respective
locations. On the other hand, the source IP address of a packet
transmitted by the mobile node does not correspond to the network
prefix from where it emanates.
This document discusses topologically correct reverse tunnels.
Mobile IP does dictate the use of reverse tunnels in the context of
multicast datagram routing and mobile routers. However, the source
IP address is set to the mobile node's home address, so these tunnels
are not topologically correct.
Notice that there are several uses for reverse tunnels regardless of
their topological correctness:
- Mobile routers: reverse tunnels obviate the need for recursive
tunneling [1].
- Multicast: reverse tunnels enable a mobile node away from home
to (1) join multicast groups in its home network, and (2)
transmit multicast packets such that they emanate from its home
network [1].
- The TTL of packets sent by the mobile node (for example, when
sending packets to other hosts in its home network) may be so
low that they might expire before reaching their destination.
A reverse tunnel solves the problem as it represents a TTL
decrement of one [5].
Montenegro Standards Track [Page 3]
RFC 3024 Reverse Tunneling for Mobile IP, revised January 2001
1.1. Terminology
The discussion below uses terms defined in the Mobile IP
specification. Additionally, it uses the following terms:
Forward Tunnel
A tunnel that shuttles packets towards the mobile node. It
starts at the home agent, and ends at the mobile node's care-of
address.
Reverse Tunnel
A tunnel that starts at the mobile node's care-of address and
terminates at the home agent.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [9].
1.2. Assumptions
Mobility is constrained to a common IP address space (that is, the
routing fabric between, say, the mobile node and the home agent is
not partitioned into a "private" and a "public" network).
This document does not attempt to solve the firewall traversal
problem. Rather, it assumes one of the following is true:
- There are no intervening firewalls along the path of the
tunneled packets.
- Any intervening firewalls share the security association
necessary to process any authentication [6] or encryption [7]
headers which may have been added to the tunneled packets.
The reverse tunnels considered here are symmetric, that is, they use
the same configuration (encapsulation method, IP address endpoints)
as the forward tunnel. IP in IP encapsulation [2] is assumed unless
stated otherwise.
Route optimization [4] introduces forward tunnels initiated at a
correspondent host. Since a mobile node may not know if the
correspondent host can decapsulate packets, reverse tunnels in that
context are not discussed here.
Montenegro Standards Track [Page 4]
RFC 3024 Reverse Tunneling for Mobile IP, revised January 2001
1.3. Justification
Why not let the mobile node itself initiate the tunnel to the home
agent? This is indeed what it should do if it is already operating
with a topologically correct co-located care-of address.
However, one of the primary objectives of the Mobile IP specification
is not to require this mode of operation.
The mechanisms outlined in this document are primarily intended for
use by mobile nodes that rely on the foreign agent for forward tunnel
support. It is desirable to continue supporting these mobile nodes,
even in the presence of filtering routers.
2. Overview
A mobile node arrives at a foreign network, listens for agent
advertisements and selects a foreign agent that supports reverse
tunnels. It requests this service when it registers through the
selected foreign agent. At this time, and depending on how the
mobile node wishes to deliver packets to the foreign agent, it also
requests either the Direct or the Encapsulating Delivery Style
(section 5).
In the Direct Delivery Style, the mobile node designates the foreign
agent as its default router and proceeds to send packets directly to
the foreign agent, that is, without encapsulation. The foreign agent
intercepts them, and tunnels them to the home agent.
In the Encapsulating Delivery Style, the mobile node encapsulates all
its outgoing packets to the foreign agent. The foreign agent
decapsulates and re-tunnels them to the home agent, using the foreign
agent's care-of address as the entry-point of this new tunnel.
Montenegro Standards Track [Page 5]
RFC 3024 Reverse Tunneling for Mobile IP, revised January 2001
3. New Packet Formats
3.1. Mobility Agent Advertisement Extension
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Lifetime |R|B|H|F|M|G|V|T| reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| zero or more Care-of Addresses |
| ... |
The only change to the Mobility Agent Advertisement Extension [1] is
the additional 'T' bit:
T Agent offers reverse tunneling service.
A foreign agent that sets the 'T' bit MUST support the Direct
Delivery Style. Encapsulating Delivery Style SHOULD be supported as
well (section 5).
Using this information, a mobile node is able to choose a foreign
agent that supports reverse tunnels. Notice that if a mobile node
does not understand this bit, it simply ignores it as per [1].
3.2. Registration Request
Reverse tunneling support is added directly into the Registration
Request by using one of the "rsvd" bits. If a foreign or home agent
that does not support reverse tunnels receives a request with the 'T'
bit set, the Registration Request fails. This results in a
registration denial (failure codes are specified in section 3.4).
Home agents SHOULD NOT object to providing reverse tunnel support,
because they "SHOULD be able to decapsulate and further deliver
packets addressed to themselves, sent by a mobile node" [1]. In the
case of topologically correct reverse tunnels, the packets are not
sent by the mobile node as distinguished by its home address.
Rather, the outermost (encapsulating) IP source address on such
datagrams is the care-of address of the mobile node.
In Registration Requests sent by a mobile node, the Time to Live
field in the IP header MUST be set to 255. This limits a denial of
service attack in which malicious hosts send false Registration
Requests (see Section 6).
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -