📄 rfc684.txt
字号:
reinforce the idea that distributed computing is accomplished by
joining separate entities, and that defensive programming and error
handling techniques are appropriate. Since PCP is, we think, for
distributed system builders, and not for the end user (e.g. an
RSEXEC user), avoiding the network, interconnection issues, and
relative costs, may be counter-productive if the goal is to achieve
usable network systems.
In a similar vein, the entire notion of inter-machine procedure
calling underlies a model which in effect has extended the address
space of a single process. That is, there is a single locus of
algorithm control (although perhaps not a single locus of
execution). While this model may well serve the needs of a "local"
computation where the parts are strongly bound together, our
experience in building working distributed systems has shown the
utility of a model which has multiple loci of control and execution.
In such a model, it is through agreements on the method and type of
information interchange and synchronization, that a computation is
carried out, rather than at the singular direction of a central
entity. In a model that has distributed control and execution, we
feel a process will be in a better position to naturally cope with
the many vagaries that necessarily arise in a network environment.
A COMMENTARY on PROCEDURE CALLING Page 5
The unmistakable trend in systems programming is toward
inviolable (protected) process structures with external
synchronization as a means of coping with complex debugging tasks
and the difficulty of making system changes. This trend is better
supported, we feel, by a message passing rather than a procedural
model of computation. Furthermore, we feel that network programming
techniques should be applied to local computation, not the other way
around.
Some Particulars____ ___________
In the following list, we try to be more specific with respect
to particular situations where we think the PCP concept may be weak
as the basis for a network programming system. For some of these
examples to be meaningful, the reader should be fairly familiar with
the PCP documents issued as RFC 674.
1. Recovery from component malfunction may be very
difficult to handle by a process that is not the central
control (i.e. a process which is being manipulated by
having its procedures executed). Is the situation where
there is network trouble, for example, to be modeled by a
forced procedure call to some error recovery routine? It is
precisely such situations where distributed control serves
as a better model. Consider the act of introducing an
inferior to another acquaintance and then supplying the new
handle as a parameter of a subsequent procedure call in the
inferior. The inferior's blind use of the parameter to
interact with the other process illustrates the manipulative
aspects of a superior. The inferior never really is aware
of a new communication path to a new process. The inferior
environment (as maintained by the PCP "system") has been
changed by the superior, with no active notification of the
inferior. Certainly this makes user coded error recovery
somewhat awkward.
2. Such process manipulation may at times violate the
principles of modular programming. In this vein, it seems
beneficial to be able to debug separately the pieces of a
computation and then worry only about their synchronization
to achieve a totally debugged system. With PCP in its
fullest sense, the danger of error propagation seems greater
because of the power of a process to cause execution of an
arbitrary procedure and to read/write remote data stores
without the active participation of the remote process.
3. Can we assume a proper initialization sequence if our
procedures are called remotely? Must every procedure
contain the code to check for the propriety and correct
sequencing of the call? A model in which each remote process
is an active computing element seems better able to
A COMMENTARY on PROCEDURE CALLING Page 6
conveniently apply protective standards to the code and data
it encompasses.
4. PCP doesn't model long term parallel activity in a
convenient fashion, as is required to handle various
asynchronous producer/consumer process relationships. The
synchronization is geared more to a one-to-one call and
return, rather than to the asynchronous nature and multiple
returns for a single request, as exhibited by many network
services. In addition, low priority, preemptable background
tasks are hard (impossible?) to model in a procedure call
environment.
5. Communication paths are not treated as abstract
objects which are independent from the actual entities they
connect, and hence they cannot be utilized in some useful
ways (e.g. to carry non PCP messages). Also with respect to
treating communication paths as objects, there is no concept
of passing a communication path to an inferior (or an
acquaintance), without having to create a new "connection"
(whether or not this turns out to be a physical channel).
The ability to pass communication paths is often useful in
subcontracting requests to inferior processes. To do this
within PCP requires the cooperation of the calling process
(i.e. to use the new connection handle), which again seems
to violate the concepts of modular programming. The
alternative approach in PCP is to have the superior relay
the subsequent communications to its created inferior, but
the effort involved would probably prohibit the use of this
technique for subcontracting.
6. PCP seems too complicated to be used for the type of
processing which requires periodic but short (i.e. a few
words exchanged) interactions. An example of such
interactions is the way the TIP uses the TENEX accounting
servers (see RFC #672). Furthermore, PCP is probably much
too complex for implementation on a small host. In that
regard, there does not seem to be a definition of what might
constitute a minimum implementation for a host/process which
did/could not handle all of what has been developed.
7. In the PCP model, it may become awkward or resource
consuming for a service program to do such things as queue
operations for execution at a later time (persistence) or at
a more opportune time (priority servicing mechanism). Such
implementations may require dummy returns and modification
of the controlling fork concept, or maintenance of
processing forks over long periods of inactivity.
8. It is not always true that a process connecting
(splicing) to a service should be able to influence the
service process environment in any direct way. How can a
service process in PCP prevent a malicious user fom splicing
A COMMENTARY on PROCEDURE CALLING Page 7
to it and then introducing it to an arbitrary number of
processes, thereby overflowing the table space in that
process. All of that could have been done without ever
executing a single instruction of user written code. This
difficulty is a consequence of the PCP notion of having one
process manipulate the environment of another without its
active participation in such actions.
9. Doesn't the fact that the network PCP process
implementation is so much neater than the TENEX PCP process
implementation (since TENEX doesn't have a general IPC
facility) suggest that message passing and communication
facilities supported by the "system" provides a sound basis
for multi-process implementations, and that perhaps such
facilities should be primitively available to the
distributed system builders who will use PCP?
10. There is a question of whether PCP is an
implementation virtual machine (language), or an application
virtual machine (language). That is, is PCP intended to be
used to implement systems which manage distributed
resources, or as an end product which makes the network
resources themselves easier to use for the every day,
ordinary programmer (e.g. makes the network itself
transparent to users). One gets the feeling that the
designers had both goals, and that neither one is completely
satisfied. If the former goal is taken, we believe that
most of the complexities (e.g. network trouble, broken
connections, etc.) and possibilities (e.g. redundant
implementation, broadcast request, etc.) of network
implementations are not provided for adequately. In this
view, the NSW framework (Works manager, FE) is the
distributed system that utilizes the PCP implementation
language. We do not see how the use of PCP in this context
provides for either an extra-reliable system through
component redundancy, or a persistent system which can
tolerate temporary malfunctions. If one subscribes to this
view, then it doesn't seem right that the objects that run
under the created system (i.e. the tools that run under the
PCP implemented Front End, Works Manager, and TBH monitor)
should also be aware of or use PCP. If one considers the
latter goal, that PCP implements a virtual machine to be
presented to all programmers for making distributed
resources easy to use, then it is clear that PCP with its
manifest concern for object location does not provide for
the desireable properties of network transparency.
Our conclusion is that procedure calling is not the appropriate
basis for distributed multi-computer systems because it can neither
directly nor accurately model the network environment. The PCP
virtual programming system may be inadequate for implementing many
distributed systems because the complexities and possibilities
unique to the network environment are not provided for at this basic
A COMMENTARY on PROCEDURE CALLING Page 8
level.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -