📄 rfc979.txt
字号:
Network Working Group Andrew G. Malis
Request for Comments: 979 BBN Communications Corp.
March 1986
PSN END-TO-END FUNCTIONAL SPECIFICATION
Status of this Memo
This memo is an updated version of BBN Report 5775, "End-to-End
Functional Specification". It has been updated to reflect changes
since that report was written, and is being distributed in this form
to provide information to the ARPA-Internet community about this
work. The changes described in this memo will affect AHIP (1822
LH/DH/HDH) and X.25 hosts directly connected to BBNCC PSNs.
Information concerning the schedule for deployment of this version of
the PSN software (Release 7.0) in the ARPANET and the MILNET can be
obtained from DCA. Distribution of this memo is unlimited.
1 Introduction
This memo contains the functional specification for the new BBNCC PSN
End-to-End (EE) protocol and module (PSN stands for Packet Switch
node, and has previously been known as the IMP). The EE module is
that portion of the PSN code which is responsible for maintaining EE
connections that reliably deliver data across the network, and for
handling the packet level (level 3) interactions with the hosts. The
EE protocol is the peer protocol used between EE modules to create,
maintain, and close connections. The new EE is being developed in
order to correct a number of deficiencies in the old EE, to improve
its performance and overall throughput, and to better equip the PSN
to support its current and anticipated host population.
The initial version of the new EE is being fielded in PSN Release
7.0. Both the old and new EEs are resident in the PSN code, and each
PSN may run either the old or the new EE (but not both) at any time,
under the control of the Network Operations Center (NOC). The NOC
has facilities for switching individual PSNs or the entire network
between the old and new EEs. When the old EE is running, PSN 7.0's
functionality is equivalent to that provided by PSN 6.0, and the
differences listed in this memo do not apply. Hosts on PSNs running
the old EE cannot interoperate with hosts on PSNs running the new EE.
There are two additional sections following this introduction.
Section two describes the motivation and goals driving the new EE
project.
Section three contains the new EE's functional specification. It
describes the services provided to the various types of hosts that
Malis [Page 1]
RFC 979 March 1986
PSN End-to-End Functional Specification
are supported by the PSN, the addressing capabilities that it makes
available, the functionality required for the peer protocol, and the
performance goals for the new EE.
Two notes concerning terminology are required. Throughout this
document, the units of information sent from one host to another are
referred to as "messages", and the units into which these messages
are fragmented for transmission through the subnetwork are referred
to as "subnet packets" or just "packets". This differs from X.25's
terminology; X.25 "packets" are actually messages. Also, in this
report the term "AHIP" is used to refer to the ARPANET Host-IMP
Protocol described in BBN Report 1822, "Specifications for the
Interconnection of a Host and an IMP".
2 Motivation
The old EE was developed almost a decade ago, in the early days of
packet-switching technology. This part of the PSN has remained
stable for eight years, while the environment within which the
technology operates has changed dramatically. At the time the old EE
was developed, it was used in only one network, the ARPANET. There
are now many PSN-based networks, some of which are grouped into
internets. Originally, AHIP was the only host interface protocol,
with NCP above it. The use of X.25 is now rapidly increasing, and
TCP/IP has replaced NCP.
This section describes the needs for more flexibility and increases
in some of the limits of the old EE, and lists the goals which this
new design should meet.
2.1 Benefits of a New EE
Network growth and the changing network environment make improved
performance, in terms of increasing the PSN's throughput, an
important goal for the new EE. The new EE reduces protocol
traffic overhead, thereby making more efficient use of network
line bandwidth and transit PSN processing power.
The new EE provides a set of network transport services which are
appropriate for both the AHIP and X.25 host interfaces, unlike the
old EE, which is highly optimized for and tightly tied to the AHIP
host interface.
The new EE has an adjustable window facility instead of the old
EE's fixed window of eight outstanding messages between any host
pair. The old EE applies this limit to all traffic between a pair
of hosts; it has no notion of multiple independent channels or
Malis [Page 2]
RFC 979 March 1986
PSN End-to-End Functional Specification
connections between two hosts, which the new EE allows. A network
with satellite trunking, and consequently long delays, is an
example of where the new window facility increases the EE
throughput that can be attained. TACs and gateways provide
another example where the old EE's fixed window limits throughput;
all of the traffic between a host and a TAC or a gateway currently
uses the same EE connection and is subject to the limit of eight
outstanding messages, even if more than one user's traffic flows
are involved. With the new EE, this restriction no longer
applies.
Supportability also motivates rewriting the EE software. The new
EE can be written using more modern techniques of programming
practice, such as layering and modularity, which were not as well
understood when the old EE was first designed, and which will make
the EE easier to support and to enhance.
Finally, the new EE includes a number of new features that improve
the PSN's ability to provide services which are more closely
optimized to what our customers need for their applications.
These include new addressing capabilities, precedence levels,
end-to-end data integrity checks, and monitoring and control
capabilities.
2.2 Goals for the New EE
The new EE's X.25 support is greatly improved over that provided
by the old EE. One element of this improvement is at least
halving the amount of per-message EE protocol overhead. Another
element is the unification of the different storage allocation
mechanisms used by the old EE and X.25 modules, where data
transferred between the old EE and X.25 must be copied from one
type of structure to the other.
The new EE presents, as much as possible, a non-blocking interface
to the hosts. If a host overwhelms the PSN with traffic, the PSN
ultimately has to block it, but this should happen less frequently
than at present.
In the old EE, all of the hosts contend for the same pool of
resources. In the new EE, fairness is enforced in resource
allocation among different hosts through per-host minimum
allocations for buffers and connection blocks as part of a general
buffer management system. This insures that no host can be
completely "shut out" of service by the actions of another host at
its PSN.
Malis [Page 3]
RFC 979 March 1986
PSN End-to-End Functional Specification
The EE supports four precedence levels and optional (on a per-
network basis) preemption features.
Addressing capabilities have been extended to include hunt groups.
Instead of a fixed window of eight outstanding messages between
any host pair, the maximum window size on an EE connection is
configurable to a maximum of 127. The EE allows host pairs to set
up multiple connections, each with an independent window.
A result of the old EE's reliance on destination buffer
reservation is that subnet packets can be lost if an intermediate
node goes down. The new EE uses source buffering with
retransmission in order to provide more reliable service.
The new EE has a duplex peer protocol, allowing acknowledgments to
be piggybacked on reverse traffic to reduce protocol overhead.
When reverse traffic is not available, acknowledgments are
aggregated and sent together.
The result of this development will be end-to-end software with
greater performance, supportability, and functionality.
3 End-to-End Functionality
This section contains the new EE's functional specification. It
describes the services provided to the various types of hosts that
are supported by the new EE, the addressing capabilities that it
makes available, the functionality required for the peer protocol,
the performance goals for the new EE, the EE's network management
specification, and provisions for testing and debugging.
3.1 Network Layer Services
The most important part of designing any new system is determining
its external functionality. In the case of the new EE, this is
the network layer services and interfaces presented to the hosts.
3.1.1 Common Functionality
The following three sections list details concerning the new
EE's support for the X.25, AHIP and Interoperable network layer
services. In the interest of brevity, however, additional
functionality available to all three services is listed herein:
o In order to check data integrity as packets cross through
the network, the old EE relies on a trunk-level,
Malis [Page 4]
RFC 979 March 1986
PSN End-to-End Functional Specification
hardware/ firmware-generated, per-packet CRC code (which
is either 16 or 24 bits in size, depending on the PSN-PSN
trunk protocol in use) and a software-generated
per-packet 16-bit checksum. Neither of these are
end-to-end checks, only PSN-to-PSN checks. For the new
EE, the software checksum has been extended to be an
optional 32-bit end-to-end checksum, and the per-packet
software checksum has been reduced to a parity bit.
The network administration now has a choice as to which
is most important, efficient utilization of network
trunks (due to the reduced size of the per-packet
headers), or strong checks on data integrity.
Those hosts that require strong data integrity checking
can request, in their configuration, that all messages
originating from this host include a 32-bit per-message
end-to-end checksum. This checksum is computed in the
source PSN, is ignored by tandem PSNs along the path, and
is checked in the destination PSN. If the checksum does
not check, the EE's regular source retransmission
facilities are used to have the message resent.
o The old EE's access control mechanism allows 15 separate
communities of interest to be defined, and uses an
unnecessarily complicated algorithm to define which
communities can intercommunicate. This mechanism is
being expanded to allow 32 communities of interest,
rather than the previous limit of 15. The feature that
allowed hosts to communicate with a community without
actually being a member of that community has been
removed because it was never utilized.
o The addressing capabilities of the PSN have been improved
by the new EE. In addition to continuing to support the
old EE's logical addressing facility, hunt groups (for
both AHIP and X.25 hosts) have been added. These are
described further in Section 3.2.
o Connection block preemption is supported on a
configurable per-network basis. If a network is
configured to use connection block preemption, then
lower-precedence connections can be closed by the PSN,
if necessary, in order to maintain configured
reserves of PSN resources for higher-precedence
connections.
Malis [Page 5]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -