⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rfc1152.txt

📁 RFC 的详细文档!
💻 TXT
📖 第 1 页 / 共 5 页
字号:
   Mbps to 1 Gbps.

   Mills' approach involves an externally switched architecture in which
   the timing and routing of flows between crossbar switches are
   determined by sequencing tables and counters in high-speed memory



Partridge                                                      [Page 14]

RFC 1152                  IRSG Workshop Report                April 1990


   local to each crossbar.  The switch program is driven by a
   reservation-TDMA protocol and distributed scheduling algorithm
   running in a co-located, general-purpose processor.  The end-to-end
   customers are free to use any protocol or data format consistent with
   the timing of the network.  His primary interest in the initial
   phases of the project is the study of appropriate reservation and
   scheduling algorithms.  He expect these algorithms to have much in
   common with the PODA algorithm used in the SATNET and WIDEBAND
   satellite systems and to the algorithms being considered for the
   Multiple Satellite System (MSS).

   John Robinson (JR, BBN Systems and Technologies) gave a talk called
   Beyond the Butterfly, which described work on a design for an ATM
   cell switch, known as MONET.  The talk described strategies for
   buffering at the input and output interfaces to a switch fabric
   (crossbar or butterfly).  The main idea was that cells should be
   introduced to the switch fabric in random sequence and to random
   fabric entry ports to avoid persistent traffic patterns having high
   cell loss in the switch fabric, where losses arise due to contention
   at output ports or within the switch fabric (in the case of a
   butterfly).  Next, the relationship of this work to an earlier design
   for a large-scale parallel processor, the Monarch, was described.  In
   closing, JR offered the claim that this class of switch is realizable
   in current technology (barely) for operation over SONET OC-48 2.4
   Gbps links.

   Dave Sincoskie (Bellcore) reported on two topics: recent switch
   construction at Bellcore, and high-speed processing of ATM cells
   carrying VC or DG information.  Recent switch design has resulted in
   a switch architecture named SUNSHINE, a Batcher-banyan switch which
   uses recirculation and multiple output banyans to resolve contention
   and increase throughput.  A paper on this switch will be published at
   ISS '90, and is available upon request from the author.  One of the
   interesting traffic results from simulations of SUNSHINE shows that
   per-port output queues of up to 1,000 cells (packets) may be
   necessary for bursty traffic patterns.  Also, Bill Marcus (at
   Bellcore) has recently produced Batcher-banyan (32x32) chips which
   test up to 170Mb/sec per port.

   The second point in this talk was that there is little difference in
   the switching processing of Virtual Circuit (VC) and Datagram (DG)
   traffic that which has been previously broken into ATM cells at the
   network edge.  The switch needs to do a header translation operation
   followed by some queueing (not necessarily FIFO).  The header
   translation of the VC and DG cells differs mainly in the memory
   organization of the address translation tables (dense vs. sparse).

   The discussion after the presentations seemed to wander off the topic



Partridge                                                      [Page 15]

RFC 1152                  IRSG Workshop Report                April 1990


   of switching, back to some of the source-routing vs. network routing
   issues discussed earlier in the day.

Session 9: Open Mike Night (Craig Partridge, Chair)

   As an experiment, the workshop held an open mike session during the
   evening of the second day.  Participants were invited to speak for up
   to five minutes on any subject of their choice.  Minutes of this
   session are sketchy because the chair found himself pre-occupied by
   keeping speakers roughly within their time limits.

   Charlie Catlett (NSCA) showed a film of the thunderstorm simulations
   he discussed earlier.

   Dave Cheriton (Stanford) made a controversial suggestion that perhaps
   one could manage congestion in the network simply by using a steep
   price curve, in which sending large amounts of data cost
   exponentially more than sending small amounts of data (thus leading
   people only to ask for large bandwidth when they needed it, and
   having them pay so much, that we can afford to give it to them).

   Guru Parulkar (Washington University, St. Louis) argued that the
   recent discussion on appropriateness of existing protocol and need
   for new protocols (protocol architecture) for gigabit networking
   lacks the right focus.  The emphasis of the discussion should be on
   what is the right functionality for gigabit speeds, which is simpler
   per packet processing, combination of rate and window based flow
   control, smart retransmission strategy, appropriate partitioning of
   work among host cpu+os, off board cpu, and custom hardware, and
   others.  It is not surprising that the existing protocols can be
   modified to include this functionality.  By the same token, it is not
   surprising that new protocols can be designed which take advantage of
   lessons of existing protocols and also include other features
   necessary for gigabit speeds.

   Raj Jain (DEC) suggested we look at new ways to measure protocol
   performance, suggesting our current metrics are insufficiently
   informative.

   Dan Helman (UCSC) asked the group to consider, more carefully, who
   exactly the users of the network will be.  Large consumers? or many
   small consumers?









Partridge                                                      [Page 16]

RFC 1152                  IRSG Workshop Report                April 1990


Session 10: Miscellaneous Topics (Bob Braden, Chair)

   As its title implies, this session covered a variety of different
   topics relating to high-speed networking.

   Jim Kurose (University of Massachussetts) described his studies of
   scheduling and discard policies for real-time (constrained delay)
   traffic.  He showed that by enforcing local deadlines at switches
   along the path, it is possible to significantly reduce overall loss
   for such traffic.  Since his results depend upon the traffic model
   assumptions, he ended with a plea for work on traffic models, stating
   that Poisson models can sometimes lead to results that are wrong by
   many orders of magnitude.

   Nachum Shacham (SRI International) discussed the importance of error
   correction schemes that can recover lost cells, and as an example
   presented a simple scheme based upon longitudinal parity.  He also
   showed a variant, diagonal parity, which allows a single missing cell
   to be recreated and its position in the stream determined.

   Two talks concerned high-speed LANs.  Biswanath Muhkerjee (UC Davis)
   surveyed the various proposals for fair scheduling on unidirectional
   bus networks, especially those that are distance insensitive, i.e.,
   that can achieve 100% channel utilization independent of the bus
   length and data rate.  He described in particular his own scheme,
   which he calls p-i persistant.

   Howard Salwen (Proteon), speaking in place of Mehdi Massehi of IBM
   Zurich who was unable to attend, also discussed high-speed LAN
   technologies.  At 100 Mbps, a token ring has a clear advantage, but
   at 1 Gbps, the speed of light kills 802.6, for example.  He briefly
   described Massehi's reservation-based scheme, CRMA (Cyclic-
   Reservation Multiple-Access).

   Finally, Yechiam Yemeni (YY, Columbia University) discussed his work
   on a protocol silicon compiler.  In order to exploit the potential
   parallelism, he is planning to use one processor per connection.

   The session closed with a spirited discussion of about the relative
   merits of building an experimental network versus simulating it.
   Proponents of simulation pointed out the high cost of building a
   prototype and limitation on the solution space imposed by a
   particular hardware realization.  Proponents of building suggested
   that artificial traffic can never explore the state space of a
   network as well as real traffic can, and that an experimental
   prototype is important for validating simulations.





Partridge                                                      [Page 17]

RFC 1152                  IRSG Workshop Report                April 1990


Session 11: Protocol Architectures (Vint Cerf, Chair)

   Nick Maxemchuk (AT&T Bell Labs) summarized the distinctions between
   circuit switching, virtual circuits, and datagrams.  Circuits are
   good for (nearly) constant rate sources.  Circuit switching dedicates
   resources for the entire period of service.  You have to set up the
   resource allocation before using it.  In a 1.7 Gbps network, a 3000-
   mile diameter consumes 10**7 bytes during the circuit set-up round-
   trip time, and potentially the same for circuit teardown.  Some
   service requirements (file transfer, facsimile transmission) are far
   smaller than the wasted 2*10**7 bytes these circuit management delays
   impose.  (Of course, these costs are not as dramatic if the allocated
   bandwidth is less than the maximum possible.)

   Virtual circuits allow shared use of bandwidth (multiplexing) when
   the primary source of traffic is idle (as in Voice Time Assigned
   Speech Interpolation).  The user notifies the network of planned
   usage.

   Datagrams (DG) are appropriate when there is no prior knowledge of
   use statistics or usage is far less than the capacity wasted during
   circuit or virtual circuit set-up.  One can adaptively route traffic
   among equivalent resources.

   In gigabit ATMs, the high service speed and decreased cell size
   increases the relative burstiness of service requests.  All of these
   characteristics combine to make DG service very attractive.

   Maxemchuk then described a deflection routing notion in which traffic
   would be broken into units of fixed length and allowed into the
   network when capacity was available and routed out by any available
   channel, with preference being given to the channel on the better
   path.  This idea is similar to the hot potato routing of Paul Baran's
   1964 packet switching design.  With buffering (one buffer), Maxemchuk
   achieved a theoretical 90% utilization.  Large reassembly buffers
   provide for better throughput.

   Maxemchuk did not have an answer to the question: how do you make
   sure empty "slots" are available where needed? This is rather like
   the problem encountered by D. Davies at the UK National Physical
   Laboratory in his isarythmic network design in which a finite number
   of crates are available for data transport throughout the network.

   Guru Parulkar (Washington University, St. Louis) presented a broad
   view of an Internet architecture in which some portion of the system
   would operate at gigabit speeds.  In his model, internet, transport,
   and application protocols would operate end to end.  The internet
   functions would be reflected in gateways and in the host/net



Partridge                                                      [Page 18]

RFC 1152                  IRSG Workshop Report                April 1990


   interface, as they are in the current Internet.  However, the
   internet would support a new type of service called a congram which
   aims at combining strengths of both soft connection and datagram.

   In this architecture, a variable grade of service would be provided.
   Users could request congrams (UCON) or the system could set them up
   internally (Picons) to avoid end-to-end setup latency.  The various
   grades of service could be requested, conceptually, by asserting
   various required (desired) levels of error control, throughput,
   delay, interarrival jitter, and so on.  Gateways based on ATM
   switches, for example, would use packet processors at entry/exit to
   do internet specific per packet processing, which may include
   fragmentation and reassembly of packets (into and out of ATM cells).

   At the transport level, Parulkar argued for protocols which can
   provide application-oriented flow and error control with simple per
   packet processing.  He also mentioned the notion of a generalized RPC
   (GRPC) in which code, data, and execution might be variously local or
   remote from the procedure initiator.  GRPC can be implemented using
   network level virtual storage mechanisms.

   The basic premise of Raj Yavatkar's presentation (University of

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -