📄 rfc2383.txt
字号:
The requirements for the AAL5 layer on the ST2+ over ATM user plane
are as follows:
o The SSCS must be null.
o Implementations must use message-mode service.
Note: Selection of the corrupted SDU delivery option on the
receiver side depends on the implementation, so the receiver may or
may not be able to select this option.
4.2.2 Overview of Interactions
The AAL5 layer entity on the ST2+ over ATM user plane provides the
following services to the ST2+ data layer.
Suzuki Informational [Page 19]
RFC 2383 ST2+ over ATM August 1998
o AAL5_UNITDATA.req
o AAL5_UNITDATA.ind
4.2.2.1 AAL5_UNITDATA.req
The AAL5_UNITDATA.req primitive sends a request for an AAL5 data
(AAL5 CPCS_SDU) transfer from the ST2+ data layer entity to the AAL5
layer entity. The semantics of the primitive are as follows:
AAL5_UNITDATA.req (
DATA,
CPCS_LP,
CPCS_UU
)
The DATA parameter specifies the AAL5 data to be transferred. The
CPCS_LP parameter specifies the value of the CLP field in the ATM
cell. The CPCS_UU parameter specifies the user-to-user data to be
transferred.
4.2.2.2 AAL5_UNITDATA.ind
The AAL5_UNITDATA.ind indicates an AAL5 data (AAL5 CPCS_SDU) delivery
from the AAL5 layer entity to the ST2+ data layer entity. The
semantics of the primitive are as follows:
AAL5_UNITDATA.ind (
DATA,
CPCS_LP,
CPCS_UU,
STATUS [optional]
)
The DATA parameter indicates the delivered AAL5 data. The CPCS_LP
parameter indicates the value of the CLP field in the ATM cell. The
CPCS_UU parameter indicates the delivered user-to-user data. The
STATUS parameter indicates whether the delivered AAL5 data is corrupt
or not. The STATUS parameter is an optional parameter, and valid
only when the corrupted SDU delivery option is selected.
4.3 AAL5 Encapsulation for ST2+ Data PDU
4.3.1 Mapping from st2_unitdata.req to AAL5_UNITDATA.req
The ST2+ Data PDU is directly assigned to the DATA parameter in
AAL5_UNITDATA.req. That is, as shown in Fig. 4.1, the ST2+ Data PDU
is mapped to the payload of AAL5 CPCS_PDU.
Suzuki Informational [Page 20]
RFC 2383 ST2+ over ATM August 1998
+-------+---------------------------+
| ST | ST2+ data | ST2+
| header| | Data PDU
+-------+---------------------------+
: :
: :
+---------------------------------------+--------+
| CPCS_PDU |PAD|CPCS_PDU| AAL5
| payload | |trailer | CPCS_PDU
+---------------------------------------+--------+
Fig. 4.1: Mapping of ST2+ data to AAL5 CPCS_PDU payload.
The value of CPCS_LP in AAL5_UNITDATA.req depends on the
implementation: 1 (low priority) or zero (high priority) may be
assigned permanently, or they may be assigned depending on the value
of pri in st2_unitdata.req.
The value of the CPCS_UU indication field in AAL5_UNITDATA.req is set
to zero.
4.3.2 Mapping from AAL5_UNITDATA.ind to st2p_unitdata.ind
The DATA parameter in AL5_UNITDATA.ind is directly assigned to the
ST2+ Data PDU. That is, the payload in AAL5 CPCS_PDU is mapped to
the ST2+ Data PDU.
If the value of STATUS in AAL5_UNITDATA.ind is valid, it is assigned
to the status in st2p_unitdata.ind.
4.3.3 Value of MTU
The value of MTU is Maximum CPCS_SDU size.
5. Protocol Specification of the Management Plane
The management plane specifies the Null FlowSpec, the Controlled-Load
Service FlowSpec, and the Guaranteed Service FlowSpec mapping rules
for UNI 3.1 traffic management.
5.1 Mapping of the Null FlowSpec
The Null FlowSpec is mapped to the UBR (VBR with the Best Effort
Indicator).
The value of the PCR (CLP=0+1) is shown in section 6.7.2.
Suzuki Informational [Page 21]
RFC 2383 ST2+ over ATM August 1998
5.2 Mapping of the Controlled-Load Service FlowSpec
The Controlled-Load FlowSpec is mapped to the VBR whose PCR
(CLP=0+1), SCR (CLP=0+1), and MBS (CLP=0+1) are specified.
The value of the PCR (CLP=0+1) is shown in section 6.7.2.
Let scr be the calculated value of the SCR (CLP=0+1). Based on the
value of the [r] field in the Controlled-Load FlowSpec, it is given
by:
scr = ([r] / 48) * S,
where S is the coefficient of segmentation, and in an implementation,
it must be configurable to any value between 1.0 and 56.0. The
recommended default value is 1.2. The value of the SCR (CLP=0+1) is
a minimum integer equal to or more than the calculated value of the
scr.
Let mbs be the calculated value of the MBS (CLP=0+1). Based on the
value of the [b] field in the Controlled-Load FlowSpec, it is given
by:
mbs = ([b] / 48) * S.
The value of the MBS (CLP=0+1) is a minimum integer equal to or more
than the calculated value of the mbs.
The values of the [p] and [m] fields in the Controlled-Load FlowSpec
are ignored.
5.3 Mapping of the Guaranteed Service FlowSpec
Note: The UNI 3.1 version of the ST2+ over ATM protocol does not
support Guaranteed Services. It will be supported by the UNI 3.1/4.0
version.
6. Protocol Specification of the Control Plane
This section specifies the rules for encapsulating the ST2+ SCMP PDU
into the AAL5 PDU, the relationship between ST2+ SCMP and PVC
management for ST2+ data, and the protocol interaction between ST2+
SCMP and UNI 3.1 signaling.
6.1 AAL5 Encapsulation for ST2+ SCMP PDU
This subsection describes AAL5 PDU encapsulation for the ST2+ SCMP
PDU. ST2+ Data PDU compatible encapsulation, AAL5 encapsulation
based on RFC 1483, and on the RFC 1483 extension are specified.
Selection of which one to use depends on the implementation.
Suzuki Informational [Page 22]
RFC 2383 ST2+ over ATM August 1998
The ST2+ over ATM protocol does not cover a VC (SVC/PVC) that
transfers ST2+ SCMP. VCs for IPv4 transfer may be used for ST2+ SCMP
transfer, and implementations may provide particular VCs for ST2+
SCMP transfer. Selection of these VCs depends on the implementation.
6.1.1 ST2+ Data PDU compatible encapsulation
The ST2+ Data PDU compatible encapsulation is shown in Fig. 6.1: the
ST2+ SCMP PDU is mapped to the payload of AAL5 CPCS_PDU.
Implementors should note that this encapsulation is not applicable
when the ST2+ SCMP PDU is multiplexed with other protocols.
+-------+---------------------------+
| ST | ST2+ SCMP | ST2+
| header| | SCMP PDU
+-------+---------------------------+
: :
: :
+---------------------------------------+--------+
| CPCS_PDU |PAD|CPCS_PDU| AAL5
| payload | |trailer | CPCS_PDU
+---------------------------------------+--------+
Fig. 6.1: ST2+ Data PDU conpatible encapsulation.
6.1.2 RFC 1483 base encapsulation
The RFC 1483 base encapsulation is shown in Fig. 6.2: the ST2+ SCMP
PDU with the RFC 1483 LLC encapsulation for routed protocol format is
mapped to the payload in AAL5 CPCS_PDU.
+------+----------------+
| ST | ST2+ SCMP | ST2+
|header| | SCMP PDU
+------+----------------+
: :
+---+---+---+-----------------------+
|LLC|OUI|PID| Information | IEEE 802 SNAP
| | | | | ISO 8802-2 LLC
+---+---+---+-----------------------+
: :
+---------------------------------------+--------+
| CPCS_PDU |PAD|CPCS_PDU| AAL5
| payload | |trailer | CPCS_PDU
+---------------------------------------+--------+
Fig. 6.2: RFC 1483 base encapsulation.
Suzuki Informational [Page 23]
RFC 2383 ST2+ over ATM August 1998
The value of the LLC is 0xAA-AA-03, the value of the OUI is 0x00-00-
00, and the value of the PID is 0x08-00. The classification of the
IPv4 and the ST2+ SCMP is determined by the IP version number, which
is located in the first four bits of the IPv4 or ST headers.
6.1.3 RFC 1483 extension base encapsulation
The RFC 1483 extension base encapsulation is the same as for RFC 1483
base encapsulation, except that the value of the OUI is 0x00-00-5E
(IANA) and the value of the PID is 0xXX-XX (TBD).
The RFC 1483 base encapsulation for the SCMP is ideal, but requires
modifying the IPv4 processing in the driver software of the WS or PC.
Therefore, the RFC 1483 base encapsulation may be difficult to
implement. This encapsulation is designed to solve this problem.
6.2 Service Primitives Provided by Control Plane
RFC 1819 ST2+ does not specify SCMP state machines. And the ST2+
over ATM protocol does not correspond to SCMP state machines.
Therefore, the control plane specification assumes the following.
o The ST2+ agent has ST2+ SCMP layer entities that correspond to the
next hops and the previous hop in the stream.
o The SCMP layer entity terminates ACK, ERROR, and timeout processing
and provides reliable SCMP delivery.
o The origin consists of an upper layer entity, ST2+ SCMP layer
entities for next hops, and a routing machine that delivers SCMP
messages between these entities.
o The intermediate agent consists of ST2+ SCMP layer entities for a
previous hop and for next hops and a routing machine that delivers
SCMP messages between these entities.
o The target consists of an upper layer entity, an ST2+ SCMP layer
entity for a previous hop, and a routing machine that delivers SCMP
messages between these entities.
At least, the ST2+ SCMP layer entity for the next hop provides the
following services to the routing machine.
o connect.req
This primitive sends a request for a CONNECT message transfer to
the ST2+ SCMP layer entity.
Suzuki Informational [Page 24]
RFC 2383 ST2+ over ATM August 1998
o change.req
This primitive sends a request for a CHANGE message transfer to the
ST2+ SCMP layer entity.
o accept.ind
This primitive indicates an ACCEPT message delivery from the ST2+
SCMP layer entity.
o disconnect.req
This primitive sends a request for a DISCONNECT message transfer to
the ST2+ SCMP layer entity.
o refuse.ind
This primitive indicates a REFUSE message delivery from the ST2+
SCMP layer entity, or indicates detection of an abnormal status
such as an illegal message or timeout in the ST2+ SCMP layer
entity.
At least, the ST2+ SCMP layer entity for the previous hop provides
the following services to the routing machine.
o connect.ind
This primitive indicates a CONNECT message delivery from the ST2+
SCMP layer entity.
o change.ind
This primitive indicates a CHANGE message delivery from the ST2+
SCMP layer entity.
o accept.req
This primitive sends a request for an ACCEPT message transfer to
the ST2+ SCMP layer entity.
o disconnect.ind
This primitive indicates a DISCONNECT message delivery from the
ST2+ SCMP layer entity, or indicates detection of an abnormal
status such as an illegal message or timeout in the ST2+ SCMP layer
entity.
o refuse.req
This primitive sends a request for a REFUSE message transfer to the
ST2+ SCMP layer entity.
6.3 Service Primitives Provided by UNI 3.1 Signaling
The UNI 3.1 signaling layer entity on the ST2+ over ATM control plane
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -