📄 rfc1291.txt
字号:
Network Working Group V. Aggarwal
Request for Comments: 1291 JvNCnet Computer Network
December 1991
Mid-Level Networks
Potential Technical Services
Status of this Memo
This RFC provides information for the Internet community. It does not
specify an Internet standard. Distribution of this memo is unlimited.
Abstract
This document proposes a set of technical services that each Internet
mid-level network can offer within the mid-level network itself and
and to its peer networks. The term "mid-level" is used as a generic
term to represent all regional and similar networks, which, due to
continuous evolutions and transitions, can no longer be termed
"regional" [MAN]. It discusses the pros and cons of offering these
services, as well as areas in which mid-level networks can work
together.
A large portion of the ideas stem from discussions at the IETF
Operational Statistics (OPstat), User Connectivity Problems (UCP) and
Network Joint Management (NJM) working groups.
Table of Contents
1. Introduction.................................................. 2
2. The Generic Model............................................. 2
3. Technical Services............................................ 3
3.1 Domain Name Service......................................... 3
3.2 Public Domain Software...................................... 4
3.3 Network Time................................................ 5
3.4 Network News................................................ 5
3.5 Mailing Lists............................................... 6
4. Experimental Testbeds......................................... 6
5. Network Information Services.................................. 7
6. Network Operations............................................ 7
7. References.................................................... 8
8. Security Considerations....................................... 9
9. Author's Address.............................................. 9
Appendix A Mailing Lists......................................... 10
Appendix B DNS Architecture Strategy............................. 10
Aggarwal [Page 1]
RFC 1291 Potential Technical Services December 1991
1. Introduction
Over the past few years, the Internet has grown to be a very large
entity and its dependability is critical to its users. Furthermore,
due to the size and nature of the network, the trend has been to
decentralize as many network functions (such as domain name-service,
whois, etc.) as possible. Efforts are being made in resource
discovery [SHHH90] so that the work of researchers is not lost in the
volumes of data that is available on the Internet.
A side result of this growth has been the logical structure imposed
in the Internet of networks classified by function. Tangible examples
in the present state are the NSFnet national backbone, the mid-
level/regional networks and campus networks. Each of these can be
viewed as hierarchies within an organization, each serving a slightly
different function than the other (campus LANs providing access to
local resources, mid-level networks providing access to remote
resources, etc.). The functions of each hierarchy then become the
"services" offered to the organizational layer below it, who in turn
depend on these services.
This document proposes a set of basic technical services that could
be offered by a mid-level network. These services would not only
increase the robustness of the mid-level network itself, but would
also serve to structure the distribution of resources and services
within the Internet. It also proposes a uniform naming convention for
locating the hosts offering these services.
2. The Generic Model
The Internet model that is used as the basis for this document is a
graph of mid-level networks connected to one another, each in turn
connecting the campus/organization networks and with the end users
attached to the campus networks. The model assumes that the mid-level
networks constitute the highest level of functional division within
the Internet hierarchy described above (this could change in the
unforeseen future). With this model in perspective, this document
addresses the objectives of minimizing unnecessary traffic within the
Internet as well as making the entire structure as robust as
possible.
The proposed structure is a derived extension of organizational LANs
where certain services are offered within the organizational LAN
itself, such as nameservice, mail, shared files, single or
hierarchical points of contact for problems, etc.
The following are the services that are discussed as possible
functions of a mid-level network:
Aggarwal [Page 2]
RFC 1291 Potential Technical Services December 1991
o Technical services
o Experimental sites for testing and dissemination of new
software and technology to end sites on the network
In addition, the following services are mentioned briefly which are
discussed in detail elsewhere [SSM91, ML91]:
o Network Operation services and the interaction between
different mid-level networks in this area
o Network Information services
3. Technical Services
The Internet has grown to be an essential entity because of the
services that it offers to its end users. The list of services is
long and growing, but some services are more widely used and deployed
than others. This section attempts to list and discuss those
technical services that could help a mid-level network provide robust
and improved services to its end sites.
3.1 Domain Name Service
According to the NSFnet traffic statistics collected for May 1991,
about 7% of the packets on the NSFnet backbone were domain nameserver
(DNS) packets. This is a significant amount of traffic, and since
most of the other network applications depend on this service, a
robust DNS service is critical to any Internet site.
Proper location of secondary nameservers so that they are located on
different physical networks can increase the reliability of this
service to a large extent [MOC87a, MOC87b]. However, the nature of
the service requires that the nameservers for the next highest level
be available in order to resolve names outline-mode side of one's
domain. Thus, for "foo.princeton.edu" to resolve "a.mid.net", the
root nameservers which point to mid.net's nameservers have to be
reachable.
To make the service more reliable, the mid-level network could have
at least one nameserver that is able to resolve nameserver queries
for all domains directly connected to it. Thus, in the event that the
entire mid-level network becomes isolated from the rest of the
Internet, applications can still resolve queries for sites directly
connected to the mid-level network. Without this functionality, there
is no way of resolving a name if the root (or higher level)
nameservers become unreachable, even if the query is for a site that
is directly connected and reachable.
Aggarwal [Page 3]
RFC 1291 Potential Technical Services December 1991
Strategies for implementing this architecture are discussed in
appendix B.
To locate such a "meta-domain" server within a mid-level network, it
is proposed that a nameserver entry for "meta-dns" exist within the
mid-level network's domain.
3.2 Public Domain Software
File transfer traffic constituted 23% of the NSFnet backbone traffic
for May 1991. Public shareware is a very valuable resource within the
Internet and a considerable amount of effort is being put into
developing applications to track all available resources in the
public archives [SHHH90].
It would be difficult, if not impossible to create an up-to-date
repository for every public domain package available on the Internet,
simply because of the volume of software and the rate at which new
software is being developed every day. Some hosts have gained
popularity as good public archives (such as uunet.uu.net, sumex-
aim.stanford.edu, wuarchive.wustl.edu) and new developers tend to
distribute the software to these sites as distribution points. The
economics of maintaining centralized archives is another deterrent to
centralization (the UUnet archives at uunet.uu.net take up roughly
1GB of disk storage).
Recently however, a number of methods for resource discovery have
been developed and are available on the Internet ("ftp-list" file
compiled by John Granose - odin@pilot.njin.net, Archie at
archie.cs.mcgill.ca and Prospero [NEU]).
It is desirable that the mid-level networks be able to provide up-
to-date pointers to the distribution hosts for available public
software archives. Coordinating the distribution of a static list is
difficult (though not impossible) and the use of automated resource
discovery mechanisms such as Archie and Prospero is recommended.
Under ideal conditions, any software that is popular and significant
(e.g., X11, TeX, RFC's) could be archived and distributed within the
mid-level network, but measuring "popularity" and "significance" are
debatable and left for further evaluation. Furthermore, a nameserver
entry for host "swdist" within the domain can provide information on
the various available alternatives for software distribution and
discovery (static file location, pointers to Archie servers, etc.) --
this nameserver entry can be an alias for a CNAME or a TXT entry.
Aggarwal [Page 4]
RFC 1291 Potential Technical Services December 1991
3.3 Network Time
An important feature of any computer network providing distributed
services is the capability to synchronize the local clocks on the
various systems in the network. Ideally, the clocks of all the
reference sources would be synchronized to national standards by wire
or radio. The importance and immense popularity of this service makes
Network Time a very useful potential service that can be provided by
a mid-level network. No specific protocol for maintaining time is
proposed, and any available protocol that maintains time with
reasonable accuracy could be used.
Network Time Protocol (NTP) traffic constituted 1% of the NSFnet
traffic during May 1991. The traffic might seem insignificant, but
there have been instances where a particular stratum-1 timeserver
(e.g., one of the stratum-1 servers at University of Delaware) has
reached a point of overload with too many different sites trying to
peer with it.
It is proposed that at least one stratum-1 and two stratum-2 servers
be located within a mid-level network (the selection of three servers
is based on the NTP standards documentation [MIL89]). Note that the
servers can be located at any of the directly connected sites in the
network as long as they are publicly accessible. All sites connected
to the mid-level network can then coordinate their system times with
the servers within the mid-level network itself. Besides increasing
the reliability of the timekeeping network, this approach would also
limit the load on each timeserver.
For locating the network time servers within a domain, nameserver
entries for "timekeeper-x" (where x= 1,2,3..) can be made within the
domain. The servers are numbered in order of preference and accuracy.
Thus, "timekeeper-1.foo.net" would be the primary timekeeper and
"timekeeper-2.foo.net" would be additional (possibly secondary)
timekeepers within domain "foo.net". If such hosts are not available
within a domain, a TXT entry pointing to other recommended time-
servers could be provided instead.
3.4 Network News
Network News (or Usenet News) constituted 14% of the NSFnet traffic
in May 1991. Netnews is an expensive service, both in terms of disk
and CPU power, as well as network bandwidth consumed.
The present structure of Network News consists of several hub sites
which are distributed over the Internet. End sites get news feeds
from other sites, and an article gets injected into the news stream
by sending it to the nearest "upstream" site, which then forwards it
Aggarwal [Page 5]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -