📄 rfc3301.txt
字号:
Network Working Group Y. T'Joens
Request for Comments: 3301 B. Sales
Category: Standards Track Alcatel
P. Crivellari
Belgacom
June 2002
Layer Two Tunnelling Protocol (L2TP):
ATM access network extensions
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2002). All Rights Reserved.
Abstract
This document augments the procedures described in RFC 2661 to
further support ATM SVC (Switched Virtual Circuits) or PVC (Permanent
Virtual Circuits) based access networks. L2TP (Layer 2 Tunneling
Protocol) specifies a protocol for tunnelling PPP packets over packet
based networks and over IP networks in particular. L2TP supports
remote access by ISDN and PSTN networks. The extensions defined
within this document allow for asymmetric bi-directional call
establishment and service selection in the ATM access network.
Table Of Contents
1. Introduction .................................................. 2
1.1 Conventions .................................................. 2
2. Assumptions ................................................... 3
2.1 Topology ..................................................... 3
2.2 Connection Establishment ..................................... 3
2.3 LCP Negotiation .............................................. 3
3. ATM access enhanced procedures ................................ 3
3.1 ATM connectivity ............................................. 4
3.2 Tunnel establishment ......................................... 4
3.3 Call establishment ........................................... 5
3.3.1 Incoming Call Establishment ................................ 5
3.3.2 Outgoing Call Establishment ................................ 6
T'Joens, et al. Standards Track [Page 1]
RFC 3301 L2TP: ATM access network extensions June 2002
3.4 Framing ...................................................... 6
4. Service model issues .......................................... 7
4.1 Authentication ............................................... 7
4.2 Authorization ................................................ 7
5. New and extended AVPs ......................................... 7
5.1 New AVP Summary .............................................. 7
5.2 New AVP definition ........................................... 8
5.3 Changed AVP Definition ....................................... 12
6. IANA considerations ........................................... 16
7. Security considerations ....................................... 17
8. Acknowledgements .............................................. 17
9. References .................................................... 17
10. Authors Addresses ............................................ 18
11. Full Copyright Statement ..................................... 19
1. Introduction
L2TP [RFC2661] defines the procedures for tunneling PPP sessions
between a so called L2TP Access Concentrator (LAC) and an L2TP
Network Server (LNS). The main focus of [RFC2661] is on supporting
HDLC based ISDN/PSTN access networks.
This document augments the procedures described in [RFC2661] to
further support ATM SVC or PVC based access networks. Support for
ATM access networks requires extensions to the present L2TP
procedures so as to cope with :
(a) the traffic management aspects of ATM connections (e.g.
asymmetric bandwidth allocation and service category selection
capabilities),
(b) the addressing format to be used in switched ATM networks [AESA]
and
(c) the limitations imposed on LCP negotiation by transporting PPP
over AAL5 over the access network segment of the PPP connection
[RFC2364].
Within this document, the necessary extensions to [RFC2661] are
defined to cope with issues (a) and (b), issue (c) which is not
specific to ATM may be solved as described in [L2TP_link].
1.1 Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY" and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
T'Joens, et al. Standards Track [Page 2]
RFC 3301 L2TP: ATM access network extensions June 2002
2. Assumptions
In this section we describe some assumptions that have lead to the
extensions described in this document.
2.1 Topology
The procedures as defined in [RFC2661] apply mainly to access network
technology such as PSTN and ISDN, which may be respectively
asynchronous HDLC and synchronous HDLC based. The aim of this
document is to extend L2TP support to allow for user / LAC
communication based on ATM access network technology.
2.2 Connection Establishment
Due to the wide variety of existing signalling protocols and ATM
service categories, and their support or non-support within ATM based
access networks, this document takes as approach to provide for a
flexible identification of ATM connection characteristics while
establishing outgoing and incoming L2TP calls. The procedures as
defined within this document allow the allocation of asymmetric
bandwidth and service category selection in terms of real or non-real
time requirements on the ATM portion of the access network.
As such, the detailed signalling protocol specific information
elements that are necessary for switched VC service, are explicitly
not negotiated during call establishment over the L2TP tunnel.
In order to identify the endpoint of the ATM connection within the
ATM access network, SVCs can be established on the basis of the ATM
end system addressing format [AESA]. For PVC based services, the PVC
can either be referred to by using the ATM end system addressing
procedure (Called/Calling Number), or by making use of a textual name
(Service Name). The latter is inspired by the procedures defined
within [Auto_PVC].
2.3 LCP negotiation
The procedures described within this document may be combined with
the procedures described in [L2TP_link] to limit LCP negotiation
between LNS and user, so as to enforce PPP over AAL5 specific LCP
negotiation [RFC2364].
3. ATM access enhanced procedures
In order to illustrate the procedures specified within this document,
this section will provide an operational description of Virtual
dial-up access through an ATM based access network (e.g., ADSL).
T'Joens, et al. Standards Track [Page 3]
RFC 3301 L2TP: ATM access network extensions June 2002
Note that the emphasis is on the changes proposed within this
document relative to [RFC2661].
3.1 ATM connectivity
Prior to initiating the PPP protocol layer, a Virtual Connection (VC)
MUST be established between the user and the Network Access Server
(LAC). This virtual connection MAY either be a preconfigured
Permanent VC(PVC), where the access network provider, NAS and user
agree beforehand on the characteristics of the PVC, or MAY be an on-
demand switched VC(SVC), where the negotiation between user, network
and NAS takes place by means of an ATM signalling protocol. Note
that for establishing PVCs, alternative use may be made of the
procedures as described in [Auto_PVC].
In both cases, the user is referred to as the virtual dial-in user.
Prior to accepting the switched connection from the virtual dial-in
user, the LAC MAY check with the LNS whether the call should be
accepted. In the latter situation, the LAC MAY determine based upon
parameters available within the call establishment message that this
concerns a virtual dial in user, or MAY undertake a partial
authentication of the end system/user, in order to bind the end
system/user with a specific LNS.
For PVC based users, the LAC MAY be triggered by the arrival of an
LCP Configure Request, or PPP Authentication request message from the
virtual dial-in user to initiate conversation with the LNS. Note
that the exact timing of triggering communication between LAC and LNS
is outside the scope of this document.
3.2 Tunnel establishment
If no tunnel connection currently exists to the desired LNS, one is
initiated. During the tunnel establishment, LNS and LAC indicate
bearer and framing capabilities to each other, according to normal
procedures.
The bearer capability is extended to allow the LAC to indicate its
support of ATM bearer devices. Positive receipt of this indication,
allows both LAC and LNS to use the extensions as defined within this
document to support ATM based incoming and outgoing calls.
If no compatibility between LNS and LAC exists according to the
extensions defined within this document, no tunnel establishment can
take place. This would be because the LAC does not support any
bearer capability which is expected by the LNS (e.g., an ATM based
LAC, that only signals the "Broadband" Bearer Capability), or vice
T'Joens, et al. Standards Track [Page 4]
RFC 3301 L2TP: ATM access network extensions June 2002
versa. It is however encouraged that LAC or LNS implementations
would allow for seamless interworking with peer devices which do not
implement the extensions defined within this document. This could be
implemented by allowing a graceful fallback to digital bearer
capability.
3.3 call establishment
During incoming and outgoing broadband call establishment, the
following extensions are defined to existing procedures.
3.3.1 Incoming Call Establishment
The ATM connection between the virtual Dial-in user and LAC MAY
either be dynamically or statically established. When the VC
connection is dynamically established (Switched VC), the LAC will
receive a SETUP message over the interface that connects it to the
ATM network. This specification does not assume any specific
interface type (UNI or NNI). Permanent VC connections MAY either be
manually configured, or configured by use of the extensions to the
ILMI procedures as defined by [Auto_PVC].
For switched VC connections, the LAC MAY select the peer LNS on the
basis of connection establishment information, or by allowing partial
PPP authentication of the virtual Dial-in user. The connection
establishment information that can be used by the LAC include Called
Party AESA, Called Party AESA Subaddress, Calling Party AESA or
Calling Party AESA Subaddress.
For Permanent VC connections, the LAC MAY be triggered by (a) the
establishment of the PVC, (b) by an LCP configure request, (c) by
partially authenticating the virtual Dial-in user, or (d) by means
outside the scope of this specification.
Within the ICRQ, the LAC MUST indicate a broadband bearer in the
Bearer Type AVP (B bit set to 1), MAY include the Service Category
AVP, and MAY include the Service Name AVP. If the LNS would not
support the B Bearer bit, it will return an error on the ICRQ
message. In such a case, the implementation MAY decide to fall back
to digital bearer capability, and SHOULD refrain from using the
extensions defined within this document. Further, the ICRQ message
MAY contain the VPI/VCI identifier AVP. This identifier can further
be used at the LNS for management purposes next to or alternative to
the Physical Channel ID AVP.
Within the ICCN, both Tx Connect Speed AVP and Rx Connect Speed
SHOULD be used if an asymetric connection has been established.
T'Joens, et al. Standards Track [Page 5]
RFC 3301 L2TP: ATM access network extensions June 2002
3.3.2 Outgoing Call Establishment
Within an OCRQ, the LNS MUST indicate to the LAC minimum and maximum
speeds for receive and transmit traffic (from the LAC perspective).
This is to allow for the bi-directional asymmetric nature of ATM
traffic contracts. Note that in order to support UBR connections
between LAC and user, the Minimum BPS MUST be set to zero.
Further during OCRQ, the LNS MAY include the required Service
Category AVP, i.e., indicating real time (rt) or non-real time (nrt)
transport services. The combination of minimum and maximum receive
and transmit speed, and the indication of the required service
category allows the LAC to establish an ATM connection according to
its own capabilities, and the ATM access network capabilities,
however within the service requirement for the PPP layer.
Real time connectivity can be provided by either CBR or rt-VBR ATM
service categories, non-real time connectivity can be provided by
UBR, nrt-VBR, ABR or GFR ATM service categories.
Further the LNS MUST indicate to the LAC in OCRQ message the called
number according to the format described in this document (NSAP
format). When the called number carries an all zero payload, the LAC
SHOULD look at the Service Name AVP to bind the tunnel call to an ATM
VC connection.
Next to the normal AVPs, the OCRP message MAY contain the VPI/VCI
identifier AVP. This identifier can further be used at the LNS for
management purposes next to or alternative to the Physical Channel ID
AVP.
3.4 Framing
Within this document the PPP PDU refers to the concatenation of PPP
protocol ID, PPP Information and PPP padding fields.
In the direction of user to LNS, the PPP PDU will be carried on top
of an AAL5 connection between user and LAC. The LAC MUST strip off
the AAL5 specific fields based on the encapsulation mechanism in use
on the ATM connection, i.e. VC multiplexed or LLC encapsulated
[RFC2364], and MUST encapsulate the PPP PDU with address and control
field, as per HDLC procedures, on the L2TP tunnel.
In the direction of LNS to user, the PPP PDU will be carried on top
of an AAL5 connection between LAC and user. The LAC MUST strip the
PPP PDU from the address and control field on the L2TP tunnel, and
T'Joens, et al. Standards Track [Page 6]
RFC 3301 L2TP: ATM access network extensions June 2002
insert the AAL5 specific fields based on the encapsulation mechanism
in use on the ATM connection, i.e. VC multiplexed or LLC
encapsulated.
4. Service model issues
4.1 Authentication
In case of ATM switched VC establishment, calling party number
information may be used for first level authentication much in the
same way as for PSTN or ISDN access. In case of permanent VC
establishment, authentication may not be an issue from the LAC side,
because of the permanent character of the VC. Bilateral agreement
between LAC and LNS providers may eliminate the authentication phase
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -