📄 rfc2475.txt
字号:
deterministic or stochastic thresholds), but this is not required
(e.g., N equal link shares). A single PHB defined in isolation is a
special case of a PHB group.
PHBs are implemented in nodes by means of some buffer management and
packet scheduling mechanisms. PHBs are defined in terms of behavior
characteristics relevant to service provisioning policies, and not in
terms of particular implementation mechanisms. In general, a variety
of implementation mechanisms may be suitable for implementing a
particular PHB group. Furthermore, it is likely that more than one
PHB group may be implemented on a node and utilized within a domain.
PHB groups should be defined such that the proper resource allocation
between groups can be inferred, and integrated mechanisms can be
implemented which can simultaneously support two or more groups. A
PHB group definition should indicate possible conflicts with
previously documented PHB groups which might prevent simultaneous
operation.
As described in [DSFIELD], a PHB is selected at a node by a mapping
of the DS codepoint in a received packet. Standardized PHBs have a
recommended codepoint. However, the total space of codepoints is
larger than the space available for recommended codepoints for
standardized PHBs, and [DSFIELD] leaves provisions for locally
configurable mappings. A codepoint->PHB mapping table may contain
both 1->1 and N->1 mappings. All codepoints must be mapped to some
PHB; in the absence of some local policy, codepoints which are not
mapped to a standardized PHB in accordance with that PHB's
specification should be mapped to the Default PHB.
2.5 Network Resource Allocation
The implementation, configuration, operation and administration of
the supported PHB groups in the nodes of a DS Domain should
effectively partition the resources of those nodes and the inter-node
links between behavior aggregates, in accordance with the domain's
service provisioning policy. Traffic conditioners can further
control the usage of these resources through enforcement of TCAs and
possibly through operational feedback from the nodes and traffic
conditioners in the domain. Although a range of services can be
deployed in the absence of complex traffic conditioning functions
(e.g., using only static marking policies), functions such as
policing, shaping, and dynamic re-marking enable the deployment of
services providing quantitative performance metrics.
The configuration of and interaction between traffic conditioners and
interior nodes should be managed by the administrative control of the
domain and may require operational control through protocols and a
control entity. There is a wide range of possible control models.
Blake, et. al. Informational [Page 20]
RFC 2475 Architecture for Differentiated Services December 1998
The precise nature and implementation of the interaction between
these components is outside the scope of this architecture. However,
scalability requires that the control of the domain does not require
micro-management of the network resources. The most scalable control
model would operate nodes in open-loop in the operational timeframe,
and would only require administrative-timescale management as SLAs
are varied. This simple model may be unsuitable in some
circumstances, and some automated but slowly varying operational
control (minutes rather than seconds) may be desirable to balance the
utilization of the network against the recent load profile.
3. Per-Hop Behavior Specification Guidelines
Basic requirements for per-hop behavior standardization are given in
[DSFIELD]. This section elaborates on that text by describing
additional guidelines for PHB (group) specifications. This is
intended to help foster implementation consistency. Before a PHB
group is proposed for standardization it should satisfy these
guidelines, as appropriate, to preserve the integrity of this
architecture.
G.1: A PHB standard must specify a recommended DS codepoint selected
from the codepoint space reserved for standard mappings [DSFIELD].
Recommended codepoints will be assigned by the IANA. A PHB proposal
may recommend a temporary codepoint from the EXP/LU space to
facilitate inter-domain experimentation. Determination of a packet's
PHB must not require inspection of additional packet header fields
beyond the DS field.
G.2: The specification of each newly proposed PHB group should
include an overview of the behavior and the purpose of the behavior
being proposed. The overview should include a problem or problems
statement for which the PHB group is targeted. The overview should
include the basic concepts behind the PHB group. These concepts
should include, but are not restricted to, queueing behavior, discard
behavior, and output link selection behavior. Lastly, the overview
should specify the method by which the PHB group solves the problem
or problems specified in the problem statement.
G.3: A PHB group specification should indicate the number of
individual PHBs specified. In the event that multiple PHBs are
specified, the interactions between these PHBs and constraints that
must be respected globally by all the PHBs within the group should be
clearly specified. As an example, the specification must indicate
whether the probability of packet reordering within a microflow is
increased if different packets in that microflow are marked for
different PHBs within the group.
Blake, et. al. Informational [Page 21]
RFC 2475 Architecture for Differentiated Services December 1998
G.4: When proper functioning of a PHB group is dependent on
constraints such as a provisioning restriction, then the PHB
definition should describe the behavior when these constraints are
violated. Further, if actions such as packet discard or re-marking
are required when these constraints are violated, then these actions
should be specifically stipulated.
G.5: A PHB group may be specified for local use within a domain in
order to provide some domain-specific functionality or domain-
specific services. In this event, the PHB specification is useful
for providing vendors with a consistent definition of the PHB group.
However, any PHB group which is defined for local use should not be
considered for standardization, but may be published as an
Informational RFC. In contrast, a PHB group which is intended for
general use will follow a stricter standardization process.
Therefore all PHB proposals should specifically state whether they
are to be considered for general or local use.
It is recognized that PHB groups can be designed with the intent of
providing host-to-host, WAN edge-to-WAN edge, and/or domain edge-to-
domain edge services. Use of the term "end-to-end" in a PHB
definition should be interpreted to mean "host-to-host" for
consistency.
Other PHB groups may be defined and deployed locally within domains,
for experimental or operational purposes. There is no requirement
that these PHB groups must be publicly documented, but they should
utilize DS codepoints from one of the EXP/LU pools as defined in
[DSFIELD].
G.6: It may be possible or appropriate for a packet marked for a PHB
within a PHB group to be re-marked to select another PHB within the
group; either within a domain or across a domain boundary. Typically
there are three reasons for such PHB modification:
a. The codepoints associated with the PHB group are collectively
intended to carry state about the network,
b. Conditions exist which require PHB promotion or demotion of a
packet (this assumes that PHBs within the group can be ranked in
some order),
c. The boundary between two domains is not covered by a SLA. In this
case the codepoint/PHB to select when crossing the boundary link
will be determined by the local policy of the upstream domain.
A PHB specification should clearly state the circumstances under
which packets marked for a PHB within a PHB group may, or should be
modified (e.g., promoted or demoted) to another PHB within the group.
If it is undesirable for a packet's PHB to be modified, the
Blake, et. al. Informational [Page 22]
RFC 2475 Architecture for Differentiated Services December 1998
specification should clearly state the consequent risks when the PHB
is modified. A possible risk to changing a packet's PHB, either
within or outside a PHB group, is a higher probability of packet re-
ordering within a microflow. PHBs within a group may carry some
host-to-host, WAN edge-to-WAN edge, and/or domain edge-to-domain edge
semantics which may be difficult to duplicate if packets are re-
marked to select another PHB from the group (or otherwise).
For certain PHB groups, it may be appropriate to reflect a state
change in the node by re-marking packets to specify another PHB from
within the group. If a PHB group is designed to reflect the state of
a network, the PHB definition must adequately describe the
relationship between the PHBs and the states they reflect. Further,
if these PHBs limit the forwarding actions a node can perform in some
way, these constraints may be specified as actions the node should,
or must perform.
G.7: A PHB group specification should include a section defining the
implications of tunneling on the utility of the PHB group. This
section should specify the implications for the utility of the PHB
group of a newly created outer header when the original DS field of
the inner header is encapsulated in a tunnel. This section should
also discuss what possible changes should be applied to the inner
header at the egress of the tunnel, when both the codepoints from the
inner header and the outer header are accessible (see Sec. 6.2).
G.8: The process of specifying PHB groups is likely to be
incremental in nature. When new PHB groups are proposed, their known
interactions with previously specified PHB groups should be
documented. When a new PHB group is created, it can be entirely new
in scope or it can be an extension to an existing PHB group. If the
PHB group is entirely independent of some or all of the existing PHB
specifications, a section should be included in the PHB specification
which details how the new PHB group can co-exist with those PHB
groups already standardized. For example, this section might
indicate the possibility of packet re-ordering within a microflow for
packets marked by codepoints associated with two separate PHB groups.
If concurrent operation of two (or more) different PHB groups in the
same node is impossible or detrimental this should be stated. If the
concurrent operation of two (or more) different PHB groups requires
some specific behaviors by the node when packets marked for PHBs from
these different PHB groups are being processed by the node at the
same time, these behaviors should be stated.
Care should be taken to avoid circularity in the definitions of PHB
groups.
Blake, et. al. Informational [Page 23]
RFC 2475 Architecture for Differentiated Services December 1998
If the proposed PHB group is an extension to an existing PHB group, a
section should be included in the PHB group specification which
details how this extension interoperates with the behavior being
extended. Further, if the extension alters or more narrowly defines
the existing behavior in some way, this should also be clearly
indicated.
G.9: Each PHB specification should include a section specifying
minimal conformance requirements for implementations of the PHB
group. This conformance section is intended to provide a means for
specifying the details of a behavior while allowing for
implementation variation to the extent permitted by the PHB
specification. This conformance section can take the form of rules,
tables, pseudo-code, or tests.
G.10: A PHB specification should include a section detailing the
security implications of the behavior. This section should include a
discussion of the re-marking of the inner header's codepoint at the
egress of a tunnel and its effect on the desired forwarding behavior.
Further, this section should also discuss how the proposed PHB group
could be used in denial-of-service attacks, reduction of service
contract attacks, and service contract violation attacks. Lastly,
this section should discuss possible means for detecting such attacks
as they are relevant to the proposed behavior.
G.11: A PHB specification should include a section detailing
configuration and management issues which may affect the operation of
the PHB and which may impact candidate services that might utilize
the PHB.
G.12: It is strongly recommended that an appendix be provided with
each PHB specification that considers the implications of the
proposed behavior on current and potential services. These services
could include but are not restricted to be user-specific, device-
specific, domain-specific or end-to-end services. It is also
strongly recommended that the appendix include a section describing
how the services are verified by users, devices, and/or domains.
G.13: It is recomme
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -