📄 rfc2475.txt
字号:
Network Working Group S. Blake
Request for Comments: 2475 Torrent Networking Technologies
Category: Informational D. Black
EMC Corporation
M. Carlson
Sun Microsystems
E. Davies
Nortel UK
Z. Wang
Bell Labs Lucent Technologies
W. Weiss
Lucent Technologies
December 1998
An Architecture for Differentiated Services
Status of this Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (1998). All Rights Reserved.
Abstract
This document defines an architecture for implementing scalable
service differentiation in the Internet. This architecture achieves
scalability by aggregating traffic classification state which is
conveyed by means of IP-layer packet marking using the DS field
[DSFIELD]. Packets are classified and marked to receive a particular
per-hop forwarding behavior on nodes along their path. Sophisticated
classification, marking, policing, and shaping operations need only
be implemented at network boundaries or hosts. Network resources are
allocated to traffic streams by service provisioning policies which
govern how traffic is marked and conditioned upon entry to a
differentiated services-capable network, and how that traffic is
forwarded within that network. A wide variety of services can be
implemented on top of these building blocks.
Blake, et. al. Informational [Page 1]
RFC 2475 Architecture for Differentiated Services December 1998
Table of Contents
1. Introduction ................................................. 2
1.1 Overview ................................................. 2
1.2 Terminology ............................................... 4
1.3 Requirements .............................................. 8
1.4 Comparisons with Other Approaches ......................... 9
2. Differentiated Services Architectural Model .................. 12
2.1 Differentiated Services Domain ............................ 12
2.1.1 DS Boundary Nodes and Interior Nodes .................. 12
2.1.2 DS Ingress Node and Egress Node ....................... 13
2.2 Differentiated Services Region ............................ 13
2.3 Traffic Classification and Conditioning ................... 14
2.3.1 Classifiers ........................................... 14
2.3.2 Traffic Profiles ...................................... 15
2.3.3 Traffic Conditioners .................................. 15
2.3.3.1 Meters ............................................ 16
2.3.3.2 Markers ........................................... 16
2.3.3.3 Shapers ........................................... 17
2.3.3.4 Droppers .......................................... 17
2.3.4 Location of Traffic Conditioners and MF Classifiers ... 17
2.3.4.1 Within the Source Domain .......................... 17
2.3.4.2 At the Boundary of a DS Domain .................... 18
2.3.4.3 In non-DS-Capable Domains ......................... 18
2.3.4.4 In Interior DS Nodes .............................. 19
2.4 Per-Hop Behaviors ......................................... 19
2.5 Network Resource Allocation ............................... 20
3. Per-Hop Behavior Specification Guidelines .................... 21
4. Interoperability with Non-Differentiated Services-Compliant
Nodes ........................................................ 25
5. Multicast Considerations ..................................... 26
6. Security and Tunneling Considerations ........................ 27
6.1 Theft and Denial of Service ............................... 28
6.2 IPsec and Tunneling Interactions .......................... 30
6.3 Auditing .................................................. 32
7. Acknowledgements ............................................. 32
8. References ................................................... 33
Authors' Addresses ............................................... 34
Full Copyright Statement ......................................... 36
1. Introduction
1.1 Overview
This document defines an architecture for implementing scalable
service differentiation in the Internet. A "Service" defines some
significant characteristics of packet transmission in one direction
across a set of one or more paths within a network. These
Blake, et. al. Informational [Page 2]
RFC 2475 Architecture for Differentiated Services December 1998
characteristics may be specified in quantitative or statistical terms
of throughput, delay, jitter, and/or loss, or may otherwise be
specified in terms of some relative priority of access to network
resources. Service differentiation is desired to accommodate
heterogeneous application requirements and user expectations, and to
permit differentiated pricing of Internet service.
This architecture is composed of a number of functional elements
implemented in network nodes, including a small set of per-hop
forwarding behaviors, packet classification functions, and traffic
conditioning functions including metering, marking, shaping, and
policing. This architecture achieves scalability by implementing
complex classification and conditioning functions only at network
boundary nodes, and by applying per-hop behaviors to aggregates of
traffic which have been appropriately marked using the DS field in
the IPv4 or IPv6 headers [DSFIELD]. Per-hop behaviors are defined to
permit a reasonably granular means of allocating buffer and bandwidth
resources at each node among competing traffic streams. Per-
application flow or per-customer forwarding state need not be
maintained within the core of the network. A distinction is
maintained between:
o the service provided to a traffic aggregate,
o the conditioning functions and per-hop behaviors used to realize
services,
o the DS field value (DS codepoint) used to mark packets to select a
per-hop behavior, and
o the particular node implementation mechanisms which realize a
per-hop behavior.
Service provisioning and traffic conditioning policies are
sufficiently decoupled from the forwarding behaviors within the
network interior to permit implementation of a wide variety of
service behaviors, with room for future expansion.
This architecture only provides service differentiation in one
direction of traffic flow and is therefore asymmetric. Development
of a complementary symmetric architecture is a topic of current
research but is outside the scope of this document; see for example
[EXPLICIT].
Sect. 1.2 is a glossary of terms used within this document. Sec. 1.3
lists requirements addressed by this architecture, and Sec. 1.4
provides a brief comparison to other approaches for service
differentiation. Sec. 2 discusses the components of the architecture
Blake, et. al. Informational [Page 3]
RFC 2475 Architecture for Differentiated Services December 1998
in detail. Sec. 3 proposes guidelines for per-hop behavior
specifications. Sec. 4 discusses interoperability issues with nodes
and networks which do not implement differentiated services as
defined in this document and in [DSFIELD]. Sec. 5 discusses issues
with multicast service delivery. Sec. 6 addresses security and
tunnel considerations.
1.2 Terminology
This section gives a general conceptual overview of the terms used in
this document. Some of these terms are more precisely defined in
later sections of this document.
Behavior Aggregate (BA) a DS behavior aggregate.
BA classifier a classifier that selects packets based
only on the contents of the DS field.
Boundary link a link connecting the edge nodes of two
domains.
Classifier an entity which selects packets based on
the content of packet headers according to
defined rules.
DS behavior aggregate a collection of packets with the same DS
codepoint crossing a link in a particular
direction.
DS boundary node a DS node that connects one DS domain to a
node either in another DS domain or in a
domain that is not DS-capable.
DS-capable capable of implementing differentiated
services as described in this architecture;
usually used in reference to a domain
consisting of DS-compliant nodes.
DS codepoint a specific value of the DSCP portion of the
DS field, used to select a PHB.
DS-compliant enabled to support differentiated services
functions and behaviors as defined in
[DSFIELD], this document, and other
differentiated services documents; usually
used in reference to a node or device.
Blake, et. al. Informational [Page 4]
RFC 2475 Architecture for Differentiated Services December 1998
DS domain a DS-capable domain; a contiguous set of
nodes which operate with a common set of
service provisioning policies and PHB
definitions.
DS egress node a DS boundary node in its role in handling
traffic as it leaves a DS domain.
DS ingress node a DS boundary node in its role in handling
traffic as it enters a DS domain.
DS interior node a DS node that is not a DS boundary node.
DS field the IPv4 header TOS octet or the IPv6
Traffic Class octet when interpreted in
conformance with the definition given in
[DSFIELD]. The bits of the DSCP field
encode the DS codepoint, while the
remaining bits are currently unused.
DS node a DS-compliant node.
DS region a set of contiguous DS domains which can
offer differentiated services over paths
across those DS domains.
Downstream DS domain the DS domain downstream of traffic flow on
a boundary link.
Dropper a device that performs dropping.
Dropping the process of discarding packets based on
specified rules; policing.
Legacy node a node which implements IPv4 Precedence as
defined in [RFC791,RFC1812] but which is
otherwise not DS-compliant.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -