📄 rfc2625.txt
字号:
Current FC Standards allow up to 3 Optional Header fields [11]:
- Network_Header (16-bytes)
- Association_Header (32-bytes)
- Device_Header (up to 64-bytes).
The IP and ARP FC Sequences SHALL carry only the Network_Header field
which is 16-bytes long. Other types of optional headers SHALL NOT be
used. The Network_Header is REQUIRED in all ARP packets and in the
first frame of a logical sequence carrying an IP payload as described
below.
An application level payload such as IP is called an Information Unit
at the FC-4 Level. Lower FC levels map this to a FC Sequence. (See
Appendix E.2 for a description of Sequences and Information Units.)
Typically, a Sequence consists of more than one frame. Larger user
data is segmented and reassembled using two methods: Sequence Count
and Relative Offset [18]. With the use of Sequence Count, data blocks
are sent using frames with increasing sequence counts (modulo 65536)
and it is quite straightforward to detect the first frame that
contains the Network_Header. When Relative Offset is used, as frames
arrive, some computation is required to detect the first frame that
contains the Network_Header. Sequence Count and Relative Offset field
control information, is carried in the FC Header.
In FC, the physical temporal ordering of the frames as it arrives at
a destination can be different from that of the order sent because of
traversing through a FC Network.
Rajagopal, et al. Standards Track [Page 6]
RFC 2625 IP and ARP over Fibre Channel June 1999
When IP forms the FC Payload then only the first frame of the logical
Sequence SHALL include the FC Network_Header. Fig. 2 shows the
logical First Frame and logical subsequent frames. Since frames may
arrive out of order, detection of the first frame of the logical FC
Sequence is necessary.
ARP packets map to a single frame FC Sequence and SHALL always carry
the FC Network_Header.
Note the definition of FC Data Field and FC Frame Payload in Fig. 1.
FC Data Field includes the FC Frame Payload and the FC Optional
Header, that is, Frame Payload definition does not include the FC
Optional Header. One or more Frame Payloads together make the FC
Sequence Payload as shown in Fig 2 and discussed further in Sections
3.2 and 3.4. FC Sequence Payload includes the mapped IP or ARP packet
along with the LLC/SNAP headers.
First Frame of a Logical FC Sequence
---+------------+---------------------------+----------//----------+---
| FC Header | FC Network_Header | FC Sequence Payload |
---+------------+---------------------------+---------//-----------+---
Subsequent Frames of a Logical FC Sequence
--+-----------+--------------//----------------+--
| FC Header | Additional FC Sequence Payload |
--+-----------+-------------//-----------------+--
Fig. 2 FC Network_Header in a Frame Sequence
The SOF, CRC, EOF control fields of the FC frame and other optional
headers have been omitted in the figure for clarity.
3.2 MTU
3.2.1 IP MTU
An FC Information Unit specific to each protocol such as IP is
defined in FC-4. This defines the upper bound on the size of the
information that can be transported.
Each IP or ARP Packet is mapped to a single FC Information Unit,
which in turn is mapped to a single FC Sequence. There is a one-to-
one mapping between an IP or ARP packet and a FC Sequence.
Fibre Channel limits the size of a single Information Unit to 2^32-1,
which is very large [2]. However, since the Maximum Transmission
Unit (MTU) size of an IPv4 packet does not exceed 65,536-bytes, the
mapped IPv4 size is far below the 2^32-1 limit.
Rajagopal, et al. Standards Track [Page 7]
RFC 2625 IP and ARP over Fibre Channel June 1999
IPv4 Packet definition includes the IP Payload and IP Headers - both
fixed and optional. The corresponding FC Sequence Payload includes
the LLC/SNAP Header and the IPv4 packet.
As noted above, the greatest length allowed for an IPv4 Packet
including any optional headers and independent of this standard is
65,536-bytes. However, limiting the IP MTU size to 65,280-bytes helps
in buffer resource allocation at N_Ports and also allows for up to
256-bytes of overhead. Since the FC Network_Header requires 16-bytes
and the IEEE 802.2 LLC/SNAP header requires 8 bytes, it leaves 232
bytes for future use.
All implementations SHALL restrict the IP MTU size to 65,280 bytes
and the corresponding FC Sequence Payload size to 65536-bytes.
3.2.2 Maximally Minimum IPv4 Packet
In order for IP fragmentation and reassembly to work properly it is
necessary that every implementation of IP be capable of transporting
a maximally minimum size IP packet without fragmentation. A maximally
minimum size IP Packet is defined as an IP Packet with an 8-byte
payload (the smallest possible non-zero payload size for a fragment)
and a 60-byte header (the largest possible header consisting of a
20-byte fixed part and a maximum size option field of 40-bytes) [17].
All implementations SHALL support a FC Data Field of 92-bytes, which
is required to support 68-bytes of the maximally minimum sized IP
Packet, 16-bytes of the FC Network_Header, and 8-bytes of the
LLC/SNAP Header.
3.2.3 ARP MTU
The ARP packet has a fixed size of 28-bytes. All implementations
SHALL support a FC Data Field size of 52-bytes, which is required to
support 28-bytes of an ARP Packet, 16-bytes of the FC Network_Header,
and 8-bytes of the LLC/SNAP Header. Note that the minimum MTU
requirement for ARP is already covered by the minimum MTU requirement
for IP but it is mentioned here for completeness.
The InARP packet is identical in size to the ARP and the same MTU
requirements apply.
Rajagopal, et al. Standards Track [Page 8]
RFC 2625 IP and ARP over Fibre Channel June 1999
3.2.4 FC Data Field containing FARP Packet
The FARP Command is a FC Extended Link Service (ELS) command and maps
directly to the FC Data Field without the LLC/SNAP or the FC
Network_Header. The FARP Command has a fixed size of 76-bytes.
Because FARP operates purely in the FC space, it places no special
MTU requirements in this specification.
3.3 FC Port and Node Network Addresses
FC devices are identified by Nodes and their Ports. A Node is a
collection of one or more Ports identified by a unique nonvolatile
64-bit World Wide Node name (WW_NN). Each Port in a node, is
identified with a unique nonvolatile 64-bit World Wide Port name
(WW_PN), and a volatile Port Identifier (Port_ID).
Port_IDs are 24-bits long. A FC frame header carries a Source Port_ID
(S_ID) and a Destination Port_ID (D_ID). The Port_ID of a given port
is volatile. (The mechanism(s) by which a Port_ID may change in a FC
topology is outside the scope of this document. See Appendix D).
The FC Network_Header is normally optional in FC Standards, but
REQUIRED in this specification. A FC Network_Header carries source
and destination WW_PNs. A WW_PN consists of a 60-bit Network Address
and a upper 4-bit Network Address Authority (NAA) field as shown in
Fig. 3. The 4-bit NAA field is used to distinguish between the
various name registration authorities used to define the Network
Address [2].
In this specification, both the Source and Destination 4-bit NAA
identifiers SHALL be set to binary '0001' indicating that an IEEE
48-bit MAC address is contained in the lower 48 bits of the network
address fields. The high order 12 bits in the network address fields
SHALL be set to 0x0000. The NAA field value equal to binary '0001'
allows FC networks to be bridged with other FC networks or
traditional LANs.
Rajagopal, et al. Standards Track [Page 9]
RFC 2625 IP and ARP over Fibre Channel June 1999
+--------+---------------------------------------+
| D_NAA |Network_Dest_Address (High-order bits) |
|(4 bits)| (28 bits) |
+--------+---------------------------------------+
| Network_Dest_Address (Low-order bits) |
| (32 bits) |
+--------+---------------------------------------+
| S_NAA |Network_Source_Address(High-order bits)|
|(4 bits)| (28 bits) |
+--------+---------------------------------------+
| Network_Source_Address (Low-order bit) |
| (32 bits) |
+--------+---------------------------------------+
Fig. 3 Format of the Network_Header Field
3.4 FC Sequence Payload Format
FC Payload with IP:
An FC Sequence Payload carrying an IP and ARP packet SHALL use the
formats shown in Figs. 4 and 5 respectively. Both formats use the
8-byte LLC/SNAP header.
+-----------------+-----------+------------+-------------//----------+
| LLC/SNAP Header | IP Header | Opt.IP Hdr.| IP Data |
| (8 bytes) | (20 bytes)| (40 bytes | (65280 -IP Header |
| | | Max) | - Opt. IP Hdr.) bytes |
+-----------------+-----------+------------+-------------//----------+
Fig. 4 Format of FC Sequence Payload carrying IP
FC Sequence Payload with ARP:
As noted earlier, FC frames belonging to the same Sequence may be
delivered out of order over a Fabric. If the Relative Offset method
is used to identify FC Sequence Payload fragments, then the IP Header
MUST appear in the frame that has a relative offset of 0.
+-----------------+-------------------+
| LLC/SNAP Header | ARP Packet |
| (8 bytes) | (28 bytes) |
+-----------------+-------------------+
Fig. 5 Format of FC Sequence Payload carrying ARP
Rajagopal, et al. Standards Track [Page 10]
RFC 2625 IP and ARP over Fibre Channel June 1999
FC Sequence Payload with FARP:
FARP Protocol commands are directly mapped to the Frame Sequence
Payload and are 76-bytes long. No LLC/SNAP Header or FC
Network_Header is used and therefore the FC Data Field size simply
consists of the FC Sequence Payload.
LLC:
A Logical Link Control (LLC) field along with a Sub Network Access
Protocol (SNAP) field is a method used to identify routed and bridged
non-OSI protocol PDUs and is defined by IEEE 802.2 and applied to IP
in [8]. In LLC Type 1 operation (i.e., unacknowledged connectionless
mode), the LLC header is 3-bytes long and consists of a 1-byte
Destination Service Access Point (DSAP)field, a 1-byte Source Service
Access Point (SSAP)field, and a 1-byte Control field as shown in Fig.
6.
+----------+----------+----------+
| DSAP | SSAP | CTRL |
| (1 byte) | (1 byte) | (1 byte) |
+----------+----------+----------+
Fig. 6 LLC Format
The LLC's DSAP and SSAP values of 0xAA indicate that an IEEE 802.2
SNAP header follows. The LLC's CTRL value equal to 0x03 specifies an
Unnumbered Information Command PDU. In this specification the LLC
Header value SHALL be set to 0xAA-AA-03. Other values of DSAP/SSAP
indicate support for other protocols and SHALL NOT be used in this
specification.
SNAP:
The SNAP Header is 5-bytes long and consists of a 3-byte
Organizationally Unique Identifier (OUI) field and a 2-byte Protocol
Identifier (PID) as shown in Fig. 7
+------+------+-------+------+------+
| OUI | PID |
| ( 3 bytes) | (2 bytes) |
+------+------+-------+------+------+
Fig. 7 SNAP Format
SNAP was invented to "encapsulate" LAN frames within the payload.
The SNAP OUI value equal to 0x00-00-00 specifies that the PID is an
EtherType (i.e., routed non-OSI protocol).
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -