⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rfc3040.txt

📁 RFC 的详细文档!
💻 TXT
📖 第 1 页 / 共 5 页
字号:
      presentation device for content consumers.

2.4 Topological terms

   The following definitions are added to describe caching device
   topology:

   user agent cache
      The cache within the user agent program.

   local caching proxy
      The caching proxy to which a user agent connects.

   intermediate caching proxy
      Seen from the content consumer's view, all caches participating in
      the caching mesh that are not the user agent's local caching
      proxy.

   cache server
      A server to requests made by local and intermediate caching
      proxies, but which does not act as a proxy.

   cache array
      A cluster of caching proxies, acting logically as one service and
      partitioning the resource name space across the array.  Also known
      as "diffused array" or "cache cluster".







Cooper, et al.               Informational                      [Page 7]

RFC 3040      Internet Web Replication & Caching Taxonomy   January 2001


   caching mesh
      a loosely coupled set of co-operating proxy- and (optionally)
      caching-servers, or clusters, acting independently but sharing
      cacheable content between themselves using inter-cache
      communication protocols.

2.5 Automatic use of proxies

   Network administrators may wish to force or facilitate the use of
   proxies by clients, enabling such configuration within the network
   itself or within automatic systems in user agents, such that the
   content consumer need not be aware of any such configuration issues.

   The terms that describe such configurations are given below.

   automatic user-agent proxy configuration
      The technique of discovering the availability of one or more
      proxies and the automated configuration of the user agent to use
      them.  The use of a proxy is transparent to the content consumer
      but not to the user agent.  The term "automatic proxy
      configuration" is also used in this sense.

   traffic interception
      The process of using a network element to examine network traffic
      to determine whether it should be redirected.

   traffic redirection
      Redirection of client requests from a network element performing
      traffic interception to a proxy.  Used to deploy (caching) proxies
      without the need to manually reconfigure individual user agents,
      or to force the use of a proxy where such use would not otherwise
      occur.

   interception proxy (a.k.a. "transparent proxy", "transparent cache")
      The term "transparent proxy" has been used within the caching
      community to describe proxies used with zero configuration within
      the user agent.  Such use is somewhat transparent to user agents.
      Due to discrepancies with [1] (see definition of "proxy" above),
      and objections to the use of the word "transparent", we introduce
      the term "interception proxy" to describe proxies that receive
      redirected traffic flows from network elements performing traffic
      interception.

      Interception proxies receive inbound traffic flows through the
      process of traffic redirection.  (Such proxies are deployed by
      network administrators to facilitate or require the use of
      appropriate services offered by the proxy).  Problems associated
      with the deployment of interception proxies are described in the



Cooper, et al.               Informational                      [Page 8]

RFC 3040      Internet Web Replication & Caching Taxonomy   January 2001


      document "Known HTTP Proxy/Caching Problems" [23].  The use of
      interception proxies requires zero configuration of the user agent
      which act as though communicating directly with an origin server.

3. Distributed System Relationships

   This section identifies the relationships that exist in a distributed
   replication and caching environment.  Having defined these
   relationships, later sections describe the communication protocols
   used in each relationship.

3.1 Replication Relationships

   The following sections describe relationships between clients and
   replicas and between replicas themselves.

3.1.1 Client to Replica

   A client may communicate with one or more replica origin servers, as
   well as with master origin servers.  (In the absence of replica
   servers the client interacts directly with the origin server as is
   the normal case.)

      ------------------     -----------------     ------------------
      | Replica Origin |     | Master Origin |     | Replica Origin |
      |     Server     |     |    Server     |     |     Server     |
      ------------------     -----------------     ------------------
               \                    |                      /
                \                   |                     /
                 -----------------------------------------
                                    |                 Client to
                             -----------------        Replica Server
                             |     Client    |
                             -----------------

   Protocols used to enable the client to use one of the replicas can be
   found in Section 4.

3.1.2 Inter-Replica

   This is the relationship between master origin server(s) and replica
   origin servers, to replicate data sets that are accessed by clients
   in the relationship shown in Section 3.1.1.








Cooper, et al.               Informational                      [Page 9]

RFC 3040      Internet Web Replication & Caching Taxonomy   January 2001


      ------------------     -----------------     ------------------
      | Replica Origin |-----| Master Origin |-----| Replica Origin |
      |     Server     |     |    Server     |     |     Server     |
      ------------------     -----------------     ------------------

   Protocols used in this relationship can be found in Section 5.

3.2 Proxy Relationships

   There are a variety of ways in which (caching) proxies and cache
   servers communicate with each other, and with user agents.

3.2.1 Client to Non-Interception Proxy

   A client may communicate with zero or more proxies for some or all
   requests.  Where the result of communication results in no proxy
   being used, the relationship is between client and (replica) origin
   server (see Section 3.1.1).

      -----------------     -----------------     -----------------
      |     Local     |     |     Local     |     |     Local     |
      |     Proxy     |     |     Proxy     |     |     Proxy     |
      -----------------     -----------------     -----------------
               \                    |                      /
                \                   |                     /
                 -----------------------------------------
                                    |
                             -----------------
                             |     Client    |
                             -----------------

   In addition, a user agent may interact with an additional server -
   operated on behalf of a proxy for the purpose of automatic user agent
   proxy configuration.

   Schemes and protocols used in these relationships can be found in
   Section 6.

3.2.2 Client to Surrogate to Origin Server

   A client may communicate with zero or more surrogates for requests
   intended for one or more origin servers.  Where a surrogate is not
   used, the client communicates directly with an origin server.  Where
   a surrogate is used the client communicates as if with an origin
   server.  The surrogate fulfills the request from its internal cache,
   or acts as a gateway or tunnel to the origin server.





Cooper, et al.               Informational                     [Page 10]

RFC 3040      Internet Web Replication & Caching Taxonomy   January 2001


            --------------  --------------   --------------
            |   Origin   |  |   Origin   |   |   Origin   |
            |   Server   |  |   Server   |   |   Server   |
            --------------  --------------   --------------
                          \        |        /
                           \       |       /
                           -----------------
                           |   Surrogate   |
                           |               |
                           -----------------
                                   |
                                   |
                             ------------
                             |  Client  |
                             ------------

3.2.3 Inter-Proxy

   Inter-Proxy relationships exist as meshes (loosely coupled) and
   clusters (tightly coupled).

3.2.3.1 (Caching) Proxy Meshes

   Within a loosely coupled mesh of (caching) proxies, communication can
   happen at the same level between peers, and with one or more parents.

                        ---------------------  ---------------------
             -----------|    Intermediate   |  |    Intermediate   |
             |          | Caching Proxy (D) |  | Caching Proxy (E) |
             |(peer)    ---------------------  ---------------------
       --------------             | (parent)       / (parent)
       |   Cache    |             |         ------/
       | Server (C) |             |        /
       --------------             |       /
      (peer) |            -----------------       ---------------------
             -------------| Local Caching |-------|    Intermediate   |
                          |   Proxy (A)   | (peer)| Caching Proxy (B) |
                          -----------------       ---------------------
                                  |
                                  |
                              ----------
                              | Client |
                              ----------

   Client included for illustration purposes only






Cooper, et al.               Informational                     [Page 11]

RFC 3040      Internet Web Replication & Caching Taxonomy   January 2001


   An inbound request may be routed to one of a number of intermediate
   (caching) proxies based on a determination of whether that parent is
   better suited to resolving the request.

   For example, in the above figure, Cache Server C and Intermediate
   Caching Proxy B are peers of the Local Caching Proxy A, and may only
   be used when the resource requested by A already exists on either B
   or C.  Intermediate Caching Proxies D & E are parents of A, and it is
   A's choice of which to use to resolve a particular request.

   The relationship between A & B only makes sense in a caching
   environment, while the relationships between A & D and A & E are also
   appropriate where D or E are non-caching proxies.

   Protocols used in these relationships can be found in Section 7.1.

3.2.3.2 (Caching) Proxy Arrays

   Where a user agent may have a relationship with a proxy, it is
   possible that it may instead have a relationship with an array of
   proxies arranged in a tightly coupled mesh.

                              ----------------------
                         ----------------------    |
                     ---------------------    |    |
                     |  (Caching) Proxy  |    |-----
                     |      Array        |----- ^ ^
                     --------------------- ^ ^  | |
                         ^            ^    | |--- |
                         |            |-----      |
                         --------------------------

   Protocols used in this relationship can be found in Section 7.2.

3.2.4 Network Element to Caching Proxy

   A network element performing traffic interception may choose to
   redirect requests from a client to a specific proxy within an array.
   (It may also choose not to redirect the traffic, in which case the
   relationship is between client and (replica) origin server, see
   Section 3.1.1.)










Cooper, et al.               Informational                     [Page 12]

RFC 3040      Internet Web Replication & Caching Taxonomy   January 2001


      -----------------     -----------------     -----------------
      | Caching Proxy |     | Caching Proxy |     | Caching Proxy |
      |     Array     |     |     Array     |     |     Array     |
      -----------------     -----------------     -----------------
                \                   |                     /
                 -----------------------------------------
                                    |
                              --------------
                              |  Network   |
                              |  Element   |
                              --------------
                                    |
                                   ///
                                    |
                               ------------
                               |  Client  |
                               ------------

   The interception proxy may be directly in-line of the flow of traffic
   - in which case the intercepting network element and interception
   proxy form parts of the same hardware system - or may be out-of-path,
   requiring the intercepting network element to redirect traffic to
   another network segment.  In this latter case, communication
   protocols enable the intercepting network element to stop and start
   redirecting traffic when the interception proxy becomes
   (un)available.  Details of these protocols can be found in Section 8.

4. Replica Selection

   This section describes the schemes and protocols used in the
   cooperation and communication between client and replica origin web
   servers.  The ideal situation is to discover an optimal replica
   origin server for clients to communicate with.  Optimality is a
   policy based decision, often based upon proximity, but may be based
   on other criteria such as load.

4.1 Navigation Hyperlinks

   Best known reference:
      This memo.

   Description:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -