📄 rfc2414.txt
字号:
[Nic97] Kathleen Nichols. Improving Network Simulation with
Feedback. Com21, Inc. Technical Report. Available from
http://www.com21.com/pages/papers/068.pdf.
[PN98] Poduri, K., and K. Nichols, "Simulation Studies of
Increased Initial TCP Window Size", RFC 2415, September
1998.
[Pos82] Postel, J., "Simple Mail Transfer Protocol", STD 10, RFC
821, August 1982.
[RF97] Ramakrishnan, K., and S. Floyd, "A Proposal to Add
Explicit Congestion Notification (ECN) to IPv6 and to
TCP", Work in Progress.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2309] Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering,
S., Estrin, D., Floyd, S., Jacobson, V., Minshall, G.,
Partridge, C., Peterson, L., Ramakrishnan, K., Shenker,
S., Wroclawski, J., and L. Zhang, "Recommendations on
Queue Management and Congestion Avoidance in the
Internet", RFC 2309, April 1998.
[S97] Stevens, W., "TCP Slow Start, Congestion Avoidance, Fast
Retransmit, and Fast Recovery Algorithms", RFC 2001,
January 1997.
[SP97] Shepard, T., and C. Partridge, "When TCP Starts Up With
Four Packets Into Only Three Buffers", RFC 2416,
September 1998.
Allman, et. al. Experimental [Page 10]
RFC 2414 Increasing TCP's Initial Window September 1998
12. Author's Addresses
Mark Allman
NASA Lewis Research Center/Sterling Software
21000 Brookpark Road
MS 54-2
Cleveland, OH 44135
EMail: mallman@lerc.nasa.gov
http://gigahertz.lerc.nasa.gov/~mallman/
Sally Floyd
Lawrence Berkeley National Laboratory
One Cyclotron Road
Berkeley, CA 94720
EMail: floyd@ee.lbl.gov
Craig Partridge
BBN Technologies
10 Moulton Street
Cambridge, MA 02138
EMail: craig@bbn.com
Allman, et. al. Experimental [Page 11]
RFC 2414 Increasing TCP's Initial Window September 1998
13. Appendix - Duplicate Segments
In the current environment (without Explicit Congestion Notification
[Flo94] [RF97]), all TCPs use segment drops as indications from the
network about the limits of available bandwidth. We argue here that
the change to a larger initial window should not result in the sender
retransmitting a large number of duplicate segments that have already
been received at the receiver.
If one segment is dropped from the initial window, there are three
different ways for TCP to recover: (1) Slow-starting from a window of
one segment, as is done after a retransmit timeout, or after Fast
Retransmit in Tahoe TCP; (2) Fast Recovery without selective
acknowledgments (SACK), as is done after three duplicate ACKs in Reno
TCP; and (3) Fast Recovery with SACK, for TCP where both the sender
and the receiver support the SACK option [MMFR96]. In all three
cases, if a single segment is dropped from the initial window, no
duplicate segments (i.e., segments that have already been received at
the receiver) are transmitted. Note that for a TCP sending four
512-byte segments in the initial window, a single segment drop will
not require a retransmit timeout, but can be recovered from using the
Fast Retransmit algorithm (unless the retransmit timer expires
prematurely). In addition, a single segment dropped from an initial
window of three segments might be repaired using the fast retransmit
algorithm, depending on which segment is dropped and whether or not
delayed ACKs are used. For example, dropping the first segment of a
three segment initial window will always require waiting for a
timeout. However, dropping the third segment will always allow
recovery via the fast retransmit algorithm, as long as no ACKs are
lost.
Next we consider scenarios where the initial window contains two to
four segments, and at least two of those segments are dropped. If
all segments in the initial window are dropped, then clearly no
duplicate segments are retransmitted, as the receiver has not yet
received any segments. (It is still a possibility that these dropped
segments used scarce bandwidth on the way to their drop point; this
issue was discussed in Section 5.)
When two segments are dropped from an initial window of three
segments, the sender will only send a duplicate segment if the first
two of the three segments were dropped, and the sender does not
receive a packet with the SACK option acknowledging the third
segment.
When two segments are dropped from an initial window of four
segments, an examination of the six possible scenarios (which we
don't go through here) shows that, depending on the position of the
Allman, et. al. Experimental [Page 12]
RFC 2414 Increasing TCP's Initial Window September 1998
dropped packets, in the absence of SACK the sender might send one
duplicate segment. There are no scenarios in which the sender sends
two duplicate segments.
When three segments are dropped from an initial window of four
segments, then, in the absence of SACK, it is possible that one
duplicate segment will be sent, depending on the position of the
dropped segments.
The summary is that in the absence of SACK, there are some scenarios
with multiple segment drops from the initial window where one
duplicate segment will be transmitted. There are no scenarios where
more that one duplicate segment will be transmitted. Our conclusion
is that the number of duplicate segments transmitted as a result of a
larger initial window should be small.
Allman, et. al. Experimental [Page 13]
RFC 2414 Increasing TCP's Initial Window September 1998
14. Full Copyright Statement
Copyright (C) The Internet Society (1998). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Allman, et. al. Experimental [Page 14]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -