📄 rfc2414.txt
字号:
Network Working Group M. Allman
Request for Comments: 2414 NASA Lewis/Sterling Software
Category: Experimental S. Floyd
LBNL
C. Partridge
BBN Technologies
September 1998
Increasing TCP's Initial Window
Status of this Memo
This memo defines an Experimental Protocol for the Internet
community. It does not specify an Internet standard of any kind.
Discussion and suggestions for improvement are requested.
Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (1998). All Rights Reserved.
Abstract
This document specifies an increase in the permitted initial window
for TCP from one segment to roughly 4K bytes. This document
discusses the advantages and disadvantages of such a change,
outlining experimental results that indicate the costs and benefits
of such a change to TCP.
Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].
1. TCP Modification
This document specifies an increase in the permitted upper bound for
TCP's initial window from one segment to between two and four
segments. In most cases, this change results in an upper bound on
the initial window of roughly 4K bytes (although given a large
segment size, the permitted initial window of two segments could be
significantly larger than 4K bytes). The upper bound for the initial
window is given more precisely in (1):
min (4*MSS, max (2*MSS, 4380 bytes)) (1)
Allman, et. al. Experimental [Page 1]
RFC 2414 Increasing TCP's Initial Window September 1998
Equivalently, the upper bound for the initial window size is based on
the maximum segment size (MSS), as follows:
If (MSS <= 1095 bytes)
then win <= 4 * MSS;
If (1095 bytes < MSS < 2190 bytes)
then win <= 4380;
If (2190 bytes <= MSS)
then win <= 2 * MSS;
This increased initial window is optional: that a TCP MAY start with
a larger initial window, not that it SHOULD.
This upper bound for the initial window size represents a change from
RFC 2001 [S97], which specifies that the congestion window be
initialized to one segment. If implementation experience proves
successful, then the intent is for this change to be incorporated
into a revision to RFC 2001.
This change applies to the initial window of the connection in the
first round trip time (RTT) of transmission following the TCP three-
way handshake. Neither the SYN/ACK nor its acknowledgment (ACK) in
the three-way handshake should increase the initial window size above
that outlined in equation (1). If the SYN or SYN/ACK is lost, the
initial window used by a sender after a correctly transmitted SYN
MUST be one segment.
TCP implementations use slow start in as many as three different
ways: (1) to start a new connection (the initial window); (2) to
restart a transmission after a long idle period (the restart window);
and (3) to restart after a retransmit timeout (the loss window). The
change proposed in this document affects the value of the initial
window. Optionally, a TCP MAY set the restart window to the minimum
of the value used for the initial window and the current value of
cwnd (in other words, using a larger value for the restart window
should never increase the size of cwnd). These changes do NOT change
the loss window, which must remain 1 segment (to permit the lowest
possible window size in the case of severe congestion).
2. Implementation Issues
When larger initial windows are implemented along with Path MTU
Discovery [MD90], and the MSS being used is found to be too large,
the congestion window `cwnd' SHOULD be reduced to prevent large
bursts of smaller segments. Specifically, `cwnd' SHOULD be reduced
by the ratio of the old segment size to the new segment size.
Allman, et. al. Experimental [Page 2]
RFC 2414 Increasing TCP's Initial Window September 1998
When larger initial windows are implemented along with Path MTU
Discovery [MD90], alternatives are to set the "Don't Fragment" (DF)
bit in all segments in the initial window, or to set the "Don't
Fragment" (DF) bit in one of the segments. It is an open question
which of these two alternatives is best; we would hope that
implementation experiences will shed light on this. In the first
case of setting the DF bit in all segments, if the initial packets
are too large, then all of the initial packets will be dropped in the
network. In the second case of setting the DF bit in only one
segment, if the initial packets are too large, then all but one of
the initial packets will be fragmented in the network. When the
second case is followed, setting the DF bit in the last segment in
the initial window provides the least chance for needless
retransmissions when the initial segment size is found to be too
large, because it minimizes the chances of duplicate ACKs triggering
a Fast Retransmit. However, more attention needs to be paid to the
interaction between larger initial windows and Path MTU Discovery.
The larger initial window proposed in this document is not intended
as an encouragement for web browsers to open multiple simultaneous
TCP connections all with large initial windows. When web browsers
open simultaneous TCP connections to the same destination, this works
against TCP's congestion control mechanisms [FF98], regardless of the
size of the initial window. Combining this behavior with larger
initial windows further increases the unfairness to other traffic in
the network.
3. Advantages of Larger Initial Windows
1. When the initial window is one segment, a receiver employing
delayed ACKs [Bra89] is forced to wait for a timeout before
generating an ACK. With an initial window of at least two
segments, the receiver will generate an ACK after the second data
segment arrives. This eliminates the wait on the timeout (often
up to 200 msec).
2. For connections transmitting only a small amount of data, a
larger initial window reduces the transmission time (assuming at
most moderate segment drop rates). For many email (SMTP [Pos82])
and web page (HTTP [BLFN96, FJGFBL97]) transfers that are less
than 4K bytes, the larger initial window would reduce the data
transfer time to a single RTT.
3. For connections that will be able to use large congestion
windows, this modification eliminates up to three RTTs and a
delayed ACK timeout during the initial slow-start phase. This
Allman, et. al. Experimental [Page 3]
RFC 2414 Increasing TCP's Initial Window September 1998
would be of particular benefit for high-bandwidth large-
propagation-delay TCP connections, such as those over satellite
links.
4. Disadvantages of Larger Initial Windows for the Individual
Connection
In high-congestion environments, particularly for routers that have a
bias against bursty traffic (as in the typical Drop Tail router
queues), a TCP connection can sometimes be better off starting with
an initial window of one segment. There are scenarios where a TCP
connection slow-starting from an initial window of one segment might
not have segments dropped, while a TCP connection starting with an
initial window of four segments might experience unnecessary
retransmits due to the inability of the router to handle small
bursts. This could result in an unnecessary retransmit timeout. For
a large-window connection that is able to recover without a
retransmit timeout, this could result in an unnecessarily-early
transition from the slow-start to the congestion-avoidance phase of
the window increase algorithm. These premature segment drops are
unlikely to occur in uncongested networks with sufficient buffering
or in moderately-congested networks where the congested router uses
active queue management (such as Random Early Detection [FJ93,
RFC2309]).
Some TCP connections will receive better performance with the higher
initial window even if the burstiness of the initial window results
in premature segment drops. This will be true if (1) the TCP
connection recovers from the segment drop without a retransmit
timeout, and (2) the TCP connection is ultimately limited to a small
congestion window by either network congestion or by the receiver's
advertised window.
5. Disadvantages of Larger Initial Windows for the Network
In terms of the potential for congestion collapse, we consider two
separate potential dangers for the network. The first danger would
be a scenario where a large number of segments on congested links
were duplicate segments that had already been received at the
receiver. The second danger would be a scenario where a large number
of segments on congested links were segments that would be dropped
later in the network before reaching their final destination.
In terms of the negative effect on other traffic in the network, a
potential disadvantage of larger initial windows would be that they
increase the general packet drop rate in the network. We discuss
these three issues below.
Allman, et. al. Experimental [Page 4]
RFC 2414 Increasing TCP's Initial Window September 1998
Duplicate segments:
As described in the previous section, the larger initial window
could occasionally result in a segment dropped from the initial
window, when that segment might not have been dropped if the
sender had slow-started from an initial window of one segment.
However, Appendix A shows that even in this case, the larger
initial window would not result in the transmission of a large
number of duplicate segments.
Segments dropped later in the network:
How much would the larger initial window for TCP increase the
number of segments on congested links that would be dropped
before reaching their final destination? This is a problem that
can only occur for connections with multiple congested links,
where some segments might use scarce bandwidth on the first
congested link along the path, only to be dropped later along the
path.
First, many of the TCP connections will have only one congested
link along the path. Segments dropped from these connections do
not "waste" scarce bandwidth, and do not contribute to congestion
collapse.
However, some network paths will have multiple congested links,
and segments dropped from the initial window could use scarce
bandwidth along the earlier congested links before ultimately
being dropped on subsequent congested links. To the extent that
the drop rate is independent of the initial window used by TCP
segments, the problem of congested links carrying segments that
will be dropped before reaching their destination will be similar
for TCP connections that start by sending four segments or one
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -